
0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2513673, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD, VOL. X, NO. Y, DECEMBER 2015 1

A Survey and Evaluation of FPGA
High-Level Synthesis Tools

Razvan Nane, Member, IEEE, Vlad-Mihai Sima, Christian Pilato, Member, IEEE,
Jongsok Choi, Student Member, IEEE, Blair Fort, Student Member, IEEE, Andrew Canis, Student Member, IEEE,

Yu Ting Chen, Student Member, IEEE, Hsuan Hsiao, Student Member, IEEE, Stephen Brown, Member, IEEE,
Fabrizio Ferrandi, Member, IEEE, Jason Anderson, Member, IEEE, Koen Bertels Member, IEEE

Abstract—High-level synthesis (HLS) is increasingly popular
for the design of high-performance and energy-efficient heteroge-
neous systems, shortening time-to-market and addressing today’s
system complexity. HLS allows designers to work at a higher-level
of abstraction by using a software program to specify the hard-
ware functionality. Additionally, HLS is particularly interesting
for designing FPGA circuits, where hardware implementations
can be easily refined and replaced in the target device. Recent
years have seen much activity in the HLS research community,
with a plethora of HLS tool offerings, from both industry and
academia. All these tools may have different input languages,
perform different internal optimizations, and produce results of
different quality, even for the very same input description. Hence,
it is challenging to compare their performance and understand
which is the best for the hardware to be implemented. We
present a comprehensive analysis of recent HLS tools, as well
as overview the areas of active interest in the HLS research
community. We also present a first-published methodology to
evaluate different HLS tools. We use our methodology to compare
one commercial and three academic tools on a common set of
C benchmarks, aiming at performing an in-depth evaluation in
terms of performance and use of resources.

Index Terms—High-Level Synthesis, Survey, Evaluation, Com-
parison, FPGA, DWARV, LegUp, Bambu.

I. INTRODUCTION

Clock frequency scaling in processors stalled in the mid-
dle of the last decade, and in recent years, an alternative
approach for high-throughput and energy-efficient processing
is based on heterogeneity, where designers integrate software
processors and application-specific customized hardware for
acceleration, each tailored towards specific tasks [1]. Although
specialized hardware has the potential to provide huge acceler-
ation at a fraction of a processor’s energy, the main drawback
is related to its design. On one hand, describing these compo-
nents in a hardware description language (HDL) (e.g. VHDL
or Verilog) allows the designer to adopt existing tools for
RTL and logic synthesis into the target technology. On the
other hand, this requires the designer to specify functionality

R. Nane, V.M. Sima, and K. Bertels are with Delft University of Technol-
ogy, The Netherlands.

C. Pilato was with Politecnico di Milano, Italy, and is now with Columbia
University, NY, USA.

F. Ferrandi is with Politecnico di Milano, Italy.
J. Choi, B. Fort, A. Canis, Y.T. Chen, H. Hsiao, S. Brown, and J. Anderson

are with University of Toronto, Canada.
Copyright (c) 2015 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

at a low level of abstraction, where cycle-by-cycle behavior
is completely specified. The use of such languages requires
advanced hardware expertise, besides being cumbersome to
develop in. This leads to longer development times that can
critically impact the time-to-market.

An interesting solution to realize such heterogeneity and,
at the same time, address the time-to-market problem is the
combination of reconfigurable hardware architectures, such
as field-programmable gate arrays (FPGAs) and high-level
synthesis (HLS) tools [2]. FPGAs are integrated circuits that
can be configured by the end user to implement digital circuits.
Most FPGAs are also reconfigurable, allowing a relatively
quick refinement and optimization of a hardware design with
no additional manufacturing costs. The designer can modify
the HDL description of the components and then use an
FPGA vendor toolchain for the synthesis of the bitstream to
configure the FPGA. HLS tools start from a high-level soft-
ware programmable language (HLL) (e.g. C, C++, SystemC)
to automatically produce a circuit specification in HDL that
performs the same function. HLS offers benefits to software
engineers, enabling them to reap some of the speed and
energy benefits of hardware, without actually having to build
up hardware expertise. HLS also offers benefits to hardware
engineers, by allowing them to design systems faster at a high-
level abstraction and rapidly explore the design space. This is
crucial in the design of complex systems [3] and especially
suitable for FPGA design where many alternative implemen-
tations can be easily generated, deployed onto the target
device, and compared. Recent developments in the FPGA
industry, such as Microsoft’s application of FPGAs in Bing
search acceleration [4], and the forthcoming acquisition of
Altera by Intel, further underscore the need for using FPGAs
as computing platforms with high-level software-amenable
design methodologies. HLS has also been recently applied to
a variety of applications (e.g. medical imaging, convolutional
neural networks, machine learning), with significant benefits
in terms of performance and energy consumption [5].

Although HLS tools seem to efficiently mitigate the problem
of creating the hardware description, automatically generating
hardware from software is not easy and a wide range of
different approaches have been developed. One approach is
to adapt the high-level language to a specific application
domain (e.g. dataflow languages for describing streaming
applications). These HLS tools can leverage dedicated op-
timizations or micro-architectural solutions for the specific

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2513673, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD, VOL. X, NO. Y, DECEMBER 2015 2

domain. However, the algorithm designer, who is usually a
software engineer, has to understand how to properly update
the code. This approach is usually time consuming and er-
ror prone. For this reason, some HLS tools offer complete
support for a standard high-level language, such as C, giving
complete freedom to the algorithm designer. Understanding
the current HLS research directions, the different HLS tools
available and their capabilities is a difficult challenge, and
a thoughtful analysis is lacking in the literature to cover all
these aspects. For example, [6] was a small survey of existing
HLS tools with a static comparison (on criteria such as the
documentation available or the learning curve) of their features
and user experience. However, the tools have not been applied
to benchmarks, nor were the results produced by the tools
compared. Indeed, given an application to be implemented as
a hardware accelerator, it is crucial to understand which HLS
tool better fits the characteristics of the algorithm. For this
reason, we believe that it is important to have a comprehensive
survey of recent HLS tools, research directions, as well as
a systematic method to evaluate different tools on the same
benchmarks in order to analyze the results.

In this paper, we present a thorough analysis of HLS tools,
current HLS research thrusts, as well as a detailed way to
evaluate different state-of-the-art tools (both academic and
commercial) on performance and resource usage. The three
academic tools considered are DWARV [7], BAMBU [8]
and LEGUP [9] – tools under active development in three
institutions and whose developers are co-authoring this paper.
The contributions of this work are:

• A thorough evaluation of past and present HLS tools
(Section II).

• A description of HLS optimizations and problems
wherein active research is underway (Section III).

• The first-published comprehensive in-depth evaluation
(Section IV) and discussion (Section V) of selected com-
mercial and academic HLS tools in terms of performance
and area metrics.

This analysis shows that industry and academia are closely
progressing together towards efficient methods to automati-
cally design application-specific customized hardware accel-
erators. However, several research challenges remain open.

II. OVERVIEW OF HIGH-LEVEL SYNTHESIS TOOLS

In this section, we present an overview of academic and
commercial HLS tools. The presentation will be done accord-
ing to a classification of the design input language as shown in
Fig. 1. We distinguish between two major categories, namely
tools that accept domain-specific languages (DSLs) and tools
that are based on general-purpose programmable languages
(GPLs). DSLs are split into new languages invented specially
for a particular tool-flow and GPL-based dialects, which are
languages based on a GPL (e.g. C) extended with specific
constructs to convey specific hardware information to the tool.
Under each category, the corresponding tools are listed in
green, red or blue fonts, where green represents the tool being
in use, red implies the tool is abandoned and blue implies
N/A, meaning that no information is currently known about

its status. Furthermore, the bullet type, defined in the figure’s
legend, denotes the target application domain for which the
tool can be used. Finally, tool names which are underlined
in the figure mean that the tool also supports SystemC as
input. Using DSLs or SystemC raises challenges for adoption
of HLS by software developers. In this section, due to space
limitations, we describe only the unique features of each
tool. For general information (e.g. target application domain,
support for floating/fixed-point arithmetic, automatic testbench
generation), the reader is referred to Table I. We first introduce
the academic HLS tools evaluated in this study, before moving
onto highlight features of other HLS tools available in the
community (either commercial or academic).

A. Academic HLS Tools Evaluated in This Study

DWARV [7] is an academic HLS compiler developed at
Delft University of Technology. The tool is based on the CoSy
commercial compiler infrastructure [10] developed by ACE.
The characteristics of DWARV are directly related to the
advantages of using CoSy, which are its modular and robust
back-end, and that is easily extensible with new optimizations.

BAMBU [8] is an academic HLS tool developed at Po-
litecnico di Milano and first released in 2012. BAMBU is
able to generate different pareto-optimal implementations to
trade-off latency and resource requirements, and to support
hardware/software partitioning for designing complex hetero-
geneous platforms. Its modular organization allows the evalu-
ation of new algorithms, architectures, or synthesis methods.
BAMBU leverages the GCC compiler’s many compiler-based
optimizations and implements a novel memory architecture to
efficiently support complex constructs of the C language (e.g.,
function calls, pointers, multi-dimensional arrays, structs) [11].
It is also able to support different data types, including
floating-point arithmetic, in order to generate optimized micro-
architectures.

LEGUP [9] is a research compiler developed at the Uni-
versity of Toronto, first released in 2011 and currently on its
forth public release. It accepts a C-language program as input
and operates in one of two ways: 1) it synthesizes the entire
C program to hardware, or 2) it synthesizes the program to a
hybrid system comprising a processor (a MIPS soft processor
or ARM) and one or more hardware accelerators. In the latter
flow, the user designates which C functions to implement
as accelerators. Communication between the MIPS/ARM and
accelerators is through Altera’s memory-mapped on-chip bus
interface (LEGUP is designed specifically to target a variety
of Altera FPGA families). For hardware synthesis, most of
the C language is supported, with the exception of dynamic
memory allocation and recursion. LEGUP is built within
the open-source LLVM compiler framework [12]. Compared
to other HLS tools, LEGUP has several unique features.
It supports Pthreads and OpenMP, where parallel software
threads are automatically synthesized into parallel-operating
hardware. Automated bitwidth reduction can be invoked to
shrink datapath widths based on compile-time (static) variable
range and bitmask analysis. Multi-cycle path analysis and reg-
ister removal are also supported, wherein LEGUP eliminates

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2513673, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD, VOL. X, NO. Y, DECEMBER 2015 3

High Level Synthesis
Tools

Domain Specific
Languages

Generic
Languages

NEW
Languages

C-extended
Languages

Procedural
Languages

Object Oriented
Languages

 CyberWorkBench (BDL)

 Bluespec (BSV)

 PipeRench (DIL)

 HercuLeS (NAC)

 CoDeveloper (ImpulseC)

 DK Design Suite (HandelC)

 SA-C (SA-C)

 Garp (C pragmas)

 Napa-C (C pragmas)

 eXCite (CSP pragmas)

 ROCCC (C extended)

 Vivado HLS CtoVerilog

 CatapultC C2H

 CtoS SynphHLS

 SPARK MATCH

 CHC AccelDSP

 LegUp CHiMPS

 Bambu DEFACTO

 GAUT gcc2verilog

 Trident

 Maxeler (MaxJ)

 KIWI (C#)

 SeaCucumber (Java)

 Cynthesizer (SystemC)

All domains

Streaming
Imaging

Stream/Image
Loop/Pipeline
DSP
DataFlow
.NET

DSE

Application domains: Tool status:

● In Use
● Abandoned
● N/A

Fig. 1: Classification of High-Level Synthesis Tools Based on the Input Language.

TABLE I: Overview of High-Level Synthesis Tools.

Status Compiler Owner License Input Output Year Domain TestBench FP FixP

In
U

se

eXCite Y Explorations Commercial C VHDL/Verilog 2001 All Yes No Yes
CoDeve- Impulse Commercial Impulse-C VHDL 2003 Image Yes Yes Noloper Accelerated Verilog Streaming

Catapult-C Calypto Design Commercial C/C++ VHDL/Verilog 2004 All Yes No YesSystems SystemC SystemC
Cynthesizer FORTE Commercial SystemC Verilog 2004 All Yes Yes Yes

Bluespec BlueSpec Inc. Commercial BSV SystemVerilog 2007 All No No No
CHC Altium Commercial C subset VHDL/Verilog 2008 All No Yes Yes

CtoS Cadence Commercial SystemC Verilog 2008 All Only cycle No YesTLM/C++ SystemC accurate
DK Design Mentor Commercial Handel-C VHDL 2009 Streaming No No YesSuite Graphics Verilog

GAUT U. Bretagne Academic C/C++ VHDL 2010 DSP Yes No Yes
MaxCompiler Maxeler Commercial MaxJ RTL 2010 DataFlow No Yes No

ROCCC Jacquard Comp. Commercial C subset VHDL 2010 Streaming No Yes No
Synphony Synopsys Commercial C/C++ VHDL/Verilog 2010 All Yes No YesC SystemC

Cyber- NEC Commercial BDL VHDL 2011 All Cycle/ Yes YesWorkBench Verilog Formal
LegUp U. Toronto Academic C Verilog 2011 All Yes Yes No
Bambu PoliMi Academic C Verilog 2012 All Yes Yes No

DWARV TU. Delft Academic C subset VHDL 2012 All Yes Yes Yes

VivadoHLS Xilinx Commercial C/C++ VHDL/Verilog 2013 All Yes Yes YesSystemC SystemC

N
/A

Trident Los Alamos NL Academic C subset VHDL 2007 Scientific No Yes No
CHiMPS U. Washington Academic C VHDL 2008 All No No No

Kiwi U. Cambridge Academic C# Verilog 2008 .NET No No No
gcc2verilog [45] U. Korea Academic C Verilog 2011 All No No No

HercuLeS Ajax Compiler Commercial C/NAC VHDL 2012 All Yes Yes Yes

A
ba

nd
on

ed

Napa-C Sarnoff Corp. Academic C subset VHDL/Verilog 1998 Loop No No No
DEFACTO U. South Cailf. Academic C RTL 1999 DSE No No No

Garp U. Berkeley Academic C subset bitstream 2000 Loop No No No
MATCH U. Northwest Academic MATLAB VHDL 2000 Image No No No

PipeRench U.Carnegie M. Academic DIL bitstream 2000 Stream No No No
SeaCucumber U. Brigham Y. Academic Java EDIF 2002 All No Yes Yes

SA-C U. Colorado Academic SA-C VHDL 2003 Image No No No
SPARK U. Cal. Irvine Academic C VHDL 2003 Control No No No

AccelDSP Xilinx Commercial MATLAB VHDL/Verilog 2006 DSP Yes Yes Yes
C2H Altera Commercial C VHDL/Verilog 2006 All No No No

CtoVerilog U. Haifa Academic C Verilog 2008 All No No No

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2513673, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD, VOL. X, NO. Y, DECEMBER 2015 4

registers on some paths permitted more than a single cycle
to complete, generating constraints for the back-end of the
toolflow accordingly.

B. Other HLS Tools
CyberWorkBench (CWB) [13] is a set of synthesis, verifi-

cation and simulation tools intended for system-level design.
The tool input is the Behavioral Description Language (BDL),
i.e. a superset of the C language extended with constructs to
express hardware concepts. Examples of such constructs are
user-defined bitwidth for variables, synchronization, explicit
clock boundaries specification, and concurrency.

Bluespec Compiler (BSC) [14] is a tool that uses Bluespec
System Verilog (BSV) as the design language. BSV is a
high-level functional HDL based on Verilog and inspired by
Haskell, where modules are implemented as a set of rules
using Verilog syntax. The rules are called Guarded Atomic
Actions and express behaviour in the form of concurrently
cooperating FSMs [15]. Using this language, and implicitly
the BSC tool, requires developers with specific expertise.

PipeRench [16] was an early reconfigurable computing
project. The PipeRench compiler was intended solely for
generating reconfigurable pipelines in stream-based media
applications. The source language is a dataflow intermediate
language, which is a single-assignment language with C
operators. The output of the tool is a bitstream to configure
the reconfigurable pipeline in the target circuit.

HercuLeS [17] is a compiler that uses an NAC (N-address
code) IR (intermediate representation), which is a new typed-
assembly language created by a front-end available through
GCC Gimple. The work deals only with complete applications
targeting FPGAs.

CoDeveloper [18] is the HLS design environment provided
by Impulse Accelerated Technologies. Impulse-C is based
on a C-language subset to which it adds communicating
sequential processes (CSP)-style extensions. These extensions
are required for parallel programming of mixed processor
and FPGA platforms. Because the basic principle of the
CSP programming model consists of processes that have to
be independently synchronized and streams for inter-process
communication, the application domain is limited primarily to
image processing and streaming applications.

DK Design Suite [19] uses Handel-C as the design lan-
guage, which is based on a rich subset of the C language
extended with hardware-specific language constructs. The user
however needs to specify timing requirements, and to describe
the parallelization and synchronization segments in the code
explicitly. In addition, the data mapping to different memories
has to be manually performed. Because of these language
additions, the user needs advanced hardware knowledge.

Single-Assignment C (SA-C) [20] is a compiler that uses
a C language variant in which variables can be set only
once. This work provided the inspiration for the later ROCCC
compiler. The language introduces new syntactical constructs
that require application rewriting.

The Garp [21] project’s main goal was to accelerate loops
of general-purpose software applications. It accepts C as input
and generates hardware code for the loop.

The Napa-C [22] project was one of the first to consider
high-level compilation for systems which contain both a mi-
croprocessor and reconfigurable logic. The NAPA C compiler,
implemented in SUIF and targeting National Semiconductor’s
NAPA1000 chip, performed semantic analysis of the pragma-
annotated program and co-synthesized a conventional program
executable for the processor, and a configuration bit stream.

In eXCite [23], communication channels have to be in-
serted manually to describe the communication between the
software and hardware. These channels can be streaming,
blocking or indexed (e.g. for handling arrays). Different types
of communication between the software and hardware parts
(e.g. streaming, shared memory) are possible.

The ROCCC [24] project focused mainly on the paral-
lelization of heavy-compute-density applications having little
control. This restricts its application domain to streaming
applications, and it means that the input C is limited to a subset
of the C language. For example, only perfectly nested loops
with fixed stride, operating on integer arrays are allowed.

Catapult-C [25] is a commercial high-level synthesis tool
initially oriented towards the ASIC hardware developer, how-
ever, it now targets both FPGAs and ASICs. It offers flexibility
in choosing the target technology, external libraries, setting the
design clock frequency, mapping function parameters to either
register, RAM, ROM or streaming interfaces.

C-to-Silicon (CtoS) [26], offered by Cadence, offers support
for both control- and dataflow applications. Since it accepts
SystemC as input, it is possible to accurately specify different
interface types, from simple function array parameters to
cycle-accurate transmission protocols.

SPARK [27] was targeted to multimedia and image pro-
cessing applications along with control-intensive microproces-
sor functional blocks. The compiler generated synthesizable
VHDL that could be mapped to both ASICs or FPGAs.

The C to Hardware Compiler [28] generates hardware to be
offloaded onto a Application Specific Processor (ASP) core,
for which verification has to be done manually by loading
and executing the generated design on an Altium Desktop
NanoBoard NB2DSK01.

A distinct feature of the GAUT [29] project is that besides
the processing accelerator, it can generate both communication
and memory units. A testbench is also automatically generated
to apply stimuli to the design and to analyze the results
for validation purposes. Fixed-point arithmetic is supported
through Mentor Graphics Algorithmic C class library.

Trident [30] is a compiler that is an offshoot of an earlier
project called Sea Cucumber [31]. It generates VHDL-based
accelerators for scientific applications operating on floating-
point data starting from a C-language program. Its strength
is in allowing users to select floating-point operators from a
variety of standard libraries, such as FPLibrary and Quixilica,
or to import their own.

C2H [32] was an HLS tool offered by Altera Corporation
since 2006. The tool is technology dependent, generating
accelerators that can only communicate via an Altera Avalon
bus with an Altera NIOS II configurable soft processor. Fur-
thermore, using this tool required advanced hardware design
knowledge in order to configure and connect the accelerators

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2513673, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD, VOL. X, NO. Y, DECEMBER 2015 5

to the rest of the system – tasks performed in Altera’s
development environment.

Synphony C [33], formerly PICO [34], is an HLS tool
for hardware DSP design offered by Synopsys. The tool can
support both streaming and memory interfaces and allows for
performance-related optimizations to be fine-tuned (e.g. loop
unrolling, loop pipelining). Floating point operations are not
permitted, but the programmer can use fixed-point arithmetic.
Comparison results published by BDTi [35] showed that per-
formance and area metrics for Synphony-produced circuits are
comparable with those obtained with AutoESL (the product
that become Vivado HLS when acquired by Xilinx).

The goal of the MATCH [36] software system was to
translate and map MATLAB code to heterogeneous comput-
ing platforms for signal and image processing applications.
The MATCH technology was later transferred to a startup
company, AccelChip [37], bought in 2006 by Xilinx but
discontinued in 2010. The tool was one of the few on the
market that started from a MATLAB input description to
generate VHDL or Verilog. Key features of the product were
automation conversion of floating point to fixed point.

The CHiMPS compiler [38] targets applications for high-
performance. The distinctive feature of CHiMPS is its many-
cache, which is a hardware model that adapts the hundreds of
small, independent FPGA memories to the specific memory
needs of an application. This allows for many simultaneous
memory operations per clock cycle to boost performance.

DEFACTO [39] is one of the early design environments that
proposed hardware/software co-design solutions as an answer
to increasing demands for computational power. DEFACTO is
composed of a series of tools such as a profiler, partitioner
and software and hardware compilers to perform fast design
space exploration given a set of design constraints.

MaxCompiler [40] is a data-flow specific HLS tool. The
compiler accepts MaxJ, a Java-based language, as input and
generates synthesizable code for the hardware data-flow en-
gines provided by Maxeler’s hardware platform.

The Kiwi [41] programming library and its associated
synthesis system generates FPGA co-processors (in Verilog)
from C# programs. Kiwi allows the programmer to use parallel
constructs such as events, monitors and threads, which are
closer to hardware concepts than classical software constructs.

Sea Cucumber [31] is a Java-based compiler that generates
EDIF netlists and adopts the standard Java thread model,
augmented with a communication model based on CSP.

Cynthesizer [42], recently acquired by Cadence, includes
formal verification between RTL and gates, power analysis,
and several optimizations, such as support for floating-point
operations with IEEE-754 single/double precision.

Vivado HLS [43], formerly AutoPilot [44], was developed
initially by AutoESL until it was acquired by Xilinx in 2011.
The new improved product, which is based on LLVM, was re-
leased early 2013, and includes a complete design environment
with abundant features to fine-tune the generation process
from HLL to HDL. C, C++ and SystemC are accepted as
input, and hardware modules are generated in VHDL, Verilog
and SystemC. During the compilation process, it is possible
to apply different optimizations, such as operation chaining,

loop pipelining, and loop unrolling. Furthermore, different
parameter mappings to memory can be specified. Streaming or
shared memory type interfaces are both supported to simplify
accelerator integration.

III. HIGH-LEVEL SYNTHESIS (HLS) OPTIMIZATIONS

HLS tools feature several optimizations to improve the per-
formance of the accelerators. Some of them are borrowed from
the compiler community, while others are specific for hardware
design. In this section, we discuss these HLS optimizations,
which are also current research trends for the HLS community.

A. Operation Chaining

Operation chaining is an optimization that performs opera-
tion scheduling within the target clock period. This requires
the designer to “chain” two combinational operators together
in a single cycle in a way that false paths are avoided [46].
Concretely, if two operations are dependent in the data-flow
graph and they can both complete execution in a time smaller
than the target clock period, then they can be scheduled in
the same cycle; otherwise at least two cycles are needed to
finish execution, along with a register for the intermediate
result. Generally, chaining reduces the number of cycles in
the schedule, improving performance and reducing the global
number of registers in the circuit. However, this is highly tech-
nology dependent and requires an accurate characterization of
the resource library (see Section III-E).

B. Bitwidth Analysis and Optimization

Bitwidth optimization is a transformation that aims to
reduce the number of bits required by datapath operators.
This is a very important optimization because it impacts all
non-functional requirements (e.g. performance, area, power)
of a design, without affecting its behavior. Differently from
GPP compilers, which are designed to target a processor with
a fixed-sized datapath (usually 32 or 64 bits), a hardware
compiler can exploit specialization by generating custom-size
operators (i.e. functional units) and registers. As a direct con-
sequence, we can select the minimal number of bits required
for an operation and/or storage of the specific algorithm,
which in turns leads to minimal space used for registers,
smaller functional units that translate into less area, less power,
and shorter critical paths. However, this analysis cannot be
usually completely automated since it often requires specific
knowledge of the algorithm and the input datasets.

C. Memory Space Allocation

FPGAs contain multiple memory banks in the form of dis-
tributed block RAMs (BRAMs) across the device. This allows
the designer to partition and map software data structures
onto dedicated BRAMs in order to implement fast memory
accesses at low cost. As a result, the scheduler can perform
multiple memory operations in one cycle once it is able to
statically determine that they access different memories in
the same cycle without contention. This feature is similar
to the allocation of different memory spaces used in the

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2513673, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD, VOL. X, NO. Y, DECEMBER 2015 6

embedded systems domain. Using multiple BRAMs increases
the available parallelism. On the other hand, these memory
elements have a limited number of memory ports and the
customization of memory accesses may require the creation
of an efficient multi-bank architecture to avoid limiting the
performance [47].

D. Loop Optimizations

Hardware acceleration is particularly important for algo-
rithms with compute-intensive loops. Loop pipelining is a key
performance optimization for loops implemented in hardware.
This optimization exploits loop-level parallelism by allowing a
loop iteration to start before the completion of its predecessor,
provided that data dependences are satisfied. The concept is
related to software pipelining [48], which has widely been
applied in VLIW processors. A key concept in loop pipelining
is the initiation interval (II), which is the number of clock
cycles between successive loop iterations. For high throughput,
it is desirable that II be as small as possible, ideally one,
which implies that a new loop iteration is started every
cycle. Achieving the minimum II for a given design can be
impeded by two factors: 1) resource constraints, and 2) loop-
carried dependencies. Regarding resource constraints, consider
a scenario where a loop body contains 3 load operations,
and 1 store operation. In this case, achieving an II less
than two is impossible if the memory has two ports, since
each loop iteration has 4 memory operations. For this reason,
loop optimizations are frequently combined with multi-bank
architecture to fully exploit the parallelism [47]. With respect
to loop-carried dependencies, if a loop iteration depends on
a result computed in a prior iteration, that data dependency
may restrict the ability to reduce II, as it may be necessary
to delay commencing an iteration until its dependent data has
been computed.

For example, DWARV leverages CoSy to implement loop
pipelining. The heuristic applied is based on swing modulo
scheduling [49], which considers operation latencies between
loop instructions to move conflicting instructions and reduce
the II. However, due to the high availability of resources in
FPGAs, the loop pipelining algorithm for hardware generation
can be relaxed. This can be accomplished by fixing the II to a
desired value, i.e. based on a required design throughput, and
then generating enough hardware (e.g. registers) to accommo-
date the particular II.

Recent research has focused on loop pipelining for nested
loops. Consider, for example, a doubly-nested loop whose
outermost loop (with induction variable i) iterates 100 times,
and whose innermost one (with induction variable j) iterates
up to i times. The iteration space traversed by i and j can
be viewed as a polyhedron (in this case, a triangle) and an-
alytically analyzed with the polyhedral model [50]. Applying
loop transformations (e.g. exchanging the outer and inner
loop) result in different polyhedra, and potentially different
IIs. Polyhedral-based optimizations have been applied to syn-
thesize memory architectures [51], improve throughput [52],
and optimize resource usage [53].

E. Hardware Resource library

In the process of HLS, in order to generate an efficient
implementation that meets timing requirements while mini-
mizing the use of resources, it is essential to determine how
to implement each operation. Specifically, the front-end phase
first inspects the given behavioral specification and identifies
operations characteristics, such as the type of each operation
(e.g. arithmetic or non-arithmetic), its operand types (e.g. in-
teger, float), and its bit-width. At this stage, some operations
may benefit from specific optimizations. For example, multi-
plications or divisions by a constant are typically transformed
into operations that use only shifts and adds [54], [55] in order
to improve area and timing. All these characteristics are then
used during the module allocation phase, where the resulting
operations are associated with functional units contained in
the resource library [46]. This heavily impacts the use of
resources and the timing of the resulting circuit. Hence, the
proper composition of such a library and its characterization
is crucial for efficient HLS.

The library of functional units can be quite rich and may
contain several implementations for each single operation. On
one hand, the library usually includes resources that are spe-
cific for the technology provider (e.g. the FPGA vendor). Some
of these resources may leverage vendor-specific intrinsics or
IP generators. In this case the module allocation will exploit
resources that have been explicitly tailored and optimized for
the specific target. This is usually adopted by HLS tools that
are specific for some FPGA vendors (e.g. [43]). The library
may also contain resources that are expressed as templates
in a standard hardware description language (i.e. Verilog or
VHDL). These templates can be retargeted and customized
based on characteristics of the target technology, like in
FloPoCo [56]. In this case, the underlying logic synthesis tool
can determine which is the best architecture to implement each
function. For example, multipliers can be mapped either on
dedicated DSP blocks or implemented with LUTs.

To perform aggressive optimizations, each component of
the library needs to be annotated with information useful
during the entire HLS process, such as resource occupation
and latency for executing the operations. There are several
approaches for library characterization. The first approach
performs a rapid logic synthesis during the scheduling and
binding of the operations to determine the most suitable can-
didate resources, like in Cadence’s C-to-Silicon [57]. However,
this approach has a high cost in terms of computation time,
especially when the HLS is repeatedly performed for the
same target. An alternative approach is to pre-characterize all
resources in advance, as done in BAMBU [8]. The performance
estimation starts with a generic template of the functional
unit, which can be parametric with respect to bitwidths and
pipeline stages. Latency and resource occupation are then
obtained by synthesizing each configuration and storing the
results in the library. Mathematical models can be built on top
of these actual synthesis values [58], [59]. Additionally, this
information can also be coupled with delays obtained after
the place-and-route phase. This may improve the maximum
frequency and the design latency and it makes the HLS results

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2513673, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD, VOL. X, NO. Y, DECEMBER 2015 7

more predictable [60].

F. Speculation and Code Motion

Most HLS scheduling techniques can extract parallelism
only within the same control region (i.e. the same CDFG basic
block). This can limit the performance of the resulting accel-
erator, especially in control-intensive designs. Speculation is
a code-motion technique that allows operations to be moved
along their execution traces, possibly anticipating them before
the conditional constructs that control their execution [61],
[62], [63], [64]. A software compiler is less likely to use this
technique since, in a sequential machine, they may delay the
overall execution with computations that are unnecessary in
certain cases. In hardware, however, speculated operations can
often be executed in parallel with the rest of the operations.
Their results simply will be simply maintained or discarded
based on later-computed branch outcomes.

G. Exploiting Spatial Parallelism

A primary mechanism through which hardware may provide
higher speed than a software implementation is by instantiating
multiple hardware units that execute concurrently (spatial
parallelism). HLS tools can extract fine-grained instruction-
level parallelism by analyzing data dependencies and loop-
level parallelism via loop pipelining. It is nevertheless difficult
to automatically extract large amounts of coarse-grained par-
allelism, as the challenges therein are akin to those faced by
an auto-parallelizing software compiler. A question that arises,
therefore, is how to specify hardware parallelism to an HLS
tool whose input is a software programming language. With
many HLS tools, a designer synthesizes an accelerator and
then manually writes RTL that instantiates multiple instances
of the synthesized core, steering input/output data to/from
each, accordingly. However, this approach is error prone and
requires hardware expertise. An alternative approach is to
support the synthesis of software parallelization paradigms.

LEGUP supports the HLS of pthreads and OpenMP [65],
which are two standard ways of expressing parallelism in C
programs, widely used by software engineers. The general
idea is to synthesize parallel software threads into an equal
number of parallel-operating hardware units. With pthreads, a
user can express both task and data-level spatial parallelism.
In the former, each hardware unit may be performing a
different function, and in the latter, multiple hardware units
perform the same function on different portions of an input
dataset. LEGUP also supports the synthesis of two standard
pthreads synchronization constructions: mutexes and barriers.
With OpenMP, the authors have focused on supporting the
aspects of the standard that target loop parallelization, e.g. an
N -iteration loop with no loop-carried dependencies can be
split into pieces that are executed in parallel by concurrently
operating hardware units. An interesting aspect of LEGUP is
the support for nested parallelism: threads forking threads.
Here, the threads initially forked within a program may them-
selves fork other threads, or contain OpenMP parallelization
constructs. A limitation of the LEGUP work is that the number
of parallel hardware units instantiated must exactly match the

number of software threads forked since in hardware there is
no support for context switching.

Altera has taken an different approach with their OpenCL
SDK [66], which supports HLS of OpenCL programs. The
OpenCL language is a variant of C and is heavily used for
parallel programming of graphics processing units (GPUs).
With OpenCL, one generally launches hundreds or thou-
sands of threads that are relatively fine-grained, for example,
each computing a vector dot product, or even an individual
scalar multiplication. Altera synthesizes OpenCL into a deeply
pipelined FPGA circuit that connects to an x86-based host
processor over PCIe. The support for OpenCL HLS allows
Altera to compete directly with GPU vendors, who have been
gaining traction in the high-performance computing market.

H. If-Conversion
If-conversion [67] is a well-known software transformation

that enables predicated execution, i.e. instructions are executed
only when its predicate or guard evaluates to true. The main
objective of this transformation is to schedule in parallel
instructions from disjoint execution paths created by selective
statements (e.g. if statements). The goals are two fold. First,
it increases the number of parallel operations. Second, it
facilitates pipelining by removing control dependencies within
the loop, which may shorten the loop body schedule. In
software, this leads to a 34% performance improvement, on
average [68]. However, if-conversion should be enabled only
when the branches have a balanced number of cycles required
to complete execution. When this is not the case, predicated
execution incurs a slowdown in execution time because, if the
shorter branch is taken, useless instructions belonging to the
longer unselected branch will need to be checked before exe-
cuting useful instructions can be resumed. Therefore, different
algorithms have been proposed to decide when it is beneficial
to apply if-conversion and when the typical conditional jump
approach should be followed. For example, in [69], a generic
model to select the fastest implementation for if-then-else
statements is proposed. This selection is done according to
the number of implicated if-statements, as well as the balance
characteristics. The approach for selecting if-conversion on a
case-by-case basis changes for hardware compilers generating
an FPGA hardware circuit. This is because resources can be
allocated as-needed (subject to area or power constraints),
and therefore, we can schedule branches in a manner that
does not affect the branch-minimal schedule. Data and control
instructions can be executed in parallel and we can insert
“jumps” to the end of the if-statement to short-cut the exe-
cution of (useless) longer branch instructions when a shorter
path is taken. This was demonstrated in [70] (incorporated
in DWARV), which proposed a lightweight if-conversion
scheme adapted for hardware generation. Furthermore, the
work showed that such a lightweight predicative scheme is
beneficial for hardware compilers, with performance always
at least as good as when no if-conversion is enabled.

IV. EVALUATION OF HIGH-LEVEL SYNTHESIS TOOLS

In this section, we define a common environment to evaluate
four HLS tools, i.e. one commercial and three academic:

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2513673, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD, VOL. X, NO. Y, DECEMBER 2015 8

DWARV, BAMBU, and LEGUP. With LEGUP we target the
fastest speedgrade of the Altera Stratix V family [71], while
with the other tools we target the fastest speedgrade of the
Xilinx Virtex-7 family [72]. Both Stratix V and Virtex-7 are
28nm state-of-the-art high-performance FPGAs fabricated by
TSMC. The primary combinational logic element in both
architectures is a dual-output 6-input look-up-table (LUT).

Three metrics are used to evaluate circuit performance:
maximum frequency (FMax in MHz), cycle latency (i.e. the
number of clock cycles needed for a benchmark to complete
the computation), and wall-clock time (minimum clock period
× cycle latency). Clock period (and the corresponding FMax)
is extracted from post-routing static timing analysis. Cycle
latency is evaluated by simulating the resulting RTL circuits
using ModelSim (discussed further below). We do not include
in the evaluations the HLS tool execution times as this time
is negligible in comparison with the synthesis, mapping,
placement and routing time.

To evaluate area, we consider logic, DSP and memory
usage. For logic area, in Xilinx devices, we report the total
number of fracturable 6-LUTs, each of which can be used to
implement any single function of up to 6 variables, or any
two functions that together use at most 5 distinct variables.
For Altera, we report the total number of used adaptive logic
modules (ALMs), each of which contains one fracturable 6-
LUT, that can implement any single function of up to 6
variables, any two 4-variable functions, a 5- and 3-variable
function, and several other dual-function combinations. With
respect to DSP usage, we consider the DSP units in Altera and
Xilinx devices to be roughly equivalent (Xilinx devices contain
hardened 25× 18 multipliers, whereas Altera devices contain
hardened 18×18 multipliers). For memory, we report the total
number of dedicated blocks used (e.g. BRAMs), which are
equivalent to 18Kb in Virtex-7 and 20Kb in Stratix V.

A. Potential Sources of Inaccuracy

Although we have endeavored to make the comparison be-
tween tools as fair as possible, we discuss potential sources of
inaccuracy to better understand the results. First, the evaluated
HLS tools are built within different compilers (e.g. BAMBU
is built within GCC, LEGUP within LLVM, and DWARV
within CoSy), and target different FPGA devices. It is thus
impossible to perfectly isolate variations in circuit area and
speed attributable to the HLS tools versus other criteria. Each
compiler framework has a different set of optimizations that
execute before HLS, with potentially considerable impact on
HLS results. Likewise, we expect that Altera’s RTL and logic
synthesis, placement and routing, are different than those
within Xilinx’s tool. Moreover, while the chosen Virtex-7 and
Stratix V are fabricated in the same TSMC process, there are
differences in the FPGA architecture itself. For example, as
mentioned above, the fracturable 6-LUTs in Altera FPGAs are
more flexible than the fracturable 6-LUTs in Xilinx FPGAs,
owing to the Altera ALMs having more inputs. This may vary
the final resource requirements for the accelerators. Finally,
although we have selected the fastest speedgrade for each
vendor’s device, we cannot be sure whether the fraction of

TABLE II: Benchmark Characteristics & Target Frequencies
for Optimized Flow (MHz).

Benchmark Domain Source BAMBU DWARV LEGUP Commercial

adpcm encode Comm CHStone 333 150 333 400
aes encrypt Encrypt CHStone 250 200 333 363
aes decrypt Encrypt CHStone 250 200 1000 312

gsm Comm CHStone 200 150 333 400
sha Encrypt CHStone 200 200 333 400

blowfish Encrypt CHStone 250 200 200 400
dfadd Arith CHStone 250 200 333 400
dfdiv Arith CHStone 250 150 200 400
dfmul Arith CHStone 250 150 200 400
dfsin Arith CHStone 250 100 200 303
jpeg Media CHStone 250 N/A 1000 400
mips Compute CHStone 400 300 200 400

motion Media CHStone 250 150 200 ERR
satd Compute DWARV 455 100 100 400
sobel Media DWARV 500 300 1000 285

bellmanford Compute DWARV 500 300 333 400
matrix Arith Bambu 250 300 250 400

die binned in Xilinx’s fastest speedgrade is the same as that
for Altera because this information is kept proprietary by the
vendors.

Other differences relate to tool assumptions, e.g. about
memory implementation. For each benchmark kernel, some
data is kept local to the kernel (i.e. in BRAMs instantiated
within the module), whereas other data is considered “global”,
kept outside the kernel and accessed via a memory controller.
As an example, in LEGUP, a data is considered local when, at
compile time, is proven to solely be accessed within the kernel
(e.g. an array declared within the kernel itself and used as a
scratch pad). The various tools evaluated do not necessarily
make the same decisions regarding which data is kept local
versus global. The performance and area numbers reported
reflect the kernel itself and do not include the global memory.
The rationale behind this decision is to focus on the results on
the HLS-generated portion of the circuit, rather than on the
integration with the rest of the system.

B. Benchmark Overview

The synthesized benchmark kernels are listed in Table II,
where we mention in the second and third columns the applica-
tion domain of the corresponding kernel, as well as its source.
Most of the kernels have been extracted from the C-language
CHStone benchmark suite [73], with the remainder being from
DWARV and BAMBU. The selected functions originate from
different application domains, which are control-flow, as well
as data-flow dominated as we aim at evaluating generic (non-
application-specific) HLS tools.

An important aspect of the benchmarks used in this study
is that input and golden output vectors are available for each
program. Hence, it is possible to “execute” each benchmark
with the built-in input vectors, both in software and also in
HLS-generated RTL using ModelSim. The RTL simulation
permits extraction of the total cycle count, as well as enables
functional correctness checking.

C. HLS Evaluation

We performed two sets of experiments to evaluate the
compilers. In the first experiment, we executed each tool in a

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2513673, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD, VOL. X, NO. Y, DECEMBER 2015 9

TABLE III: Optimizations Used (Letter in () Refers to Subsection in Section III). v: USED; x: UNUSED.
HLS Tool Compiler Framework Target FPGA OC(A) BA(B) MS(C) LO(D) HwRL(E) Sp(F) SP(G) IC(H)

LEGUP LLVM Altera v v v v x x v v
BAMBU GCC Xilinx v v v x v v x v

DWARV CoSy Xilinx v v v v x x x v
Commercial Unknown Xilinx v v v v v v v v

“push-button” manner using all of its default settings, which
we refer to as standard-optimization. The first experiment thus
represents what a user would see running the HLS tools “out
of the box”. We used the following default target frequencies:
250 MHz for BAMBU, 150 MHz for DWARV, and 200 MHz
for LEGUP. For the commercial tool, we decided to use a
default frequency of 400 MHz. In the second experiment,
we manually optimized the programs and constraints for the
specific tools (by using compiler flags and code annotations
to enable various optimizations) to generate performance-
optimized implementations. Table III lists for each tool the
optimizations enabled in this second experiment. As we do
not have access to the source of the commercial tool, its list
is based on the observations done on the available options
and on the inspection of the generated code. The last four
columns of Table II show the HLS target frequencies used
for the optimized experiment. It should be noted that there is
no strict correlation between these and the actual post place
and route frequencies obtained after implementing the designs
(shown in tables IV and V) due to the actual vendor-provided
back-end tools that perform the actual mapping, placing and
routing steps. This is explained by the inherently approximate
timing models for computing in HLS. The target frequency
used as input to the HLS tools should be regarded only as an
indication of how much operation chaining can be performed.
As a rule of thumb, in order to implement a design at some
frequency, one should target a higher frequency in HLS.

Table IV shows performance metrics (e.g. number of cycles,
maximum frequency after place & route, and wall-clock
time) obtained in the standard-optimization scenario, while
Table V shows the same performance metrics obtained in
the performance-optimized scenario. The ERR entries denote
errors that prevented us from obtaining complete results for
the corresponding benchmarks (e.g. compiler segmentation
error). Observe that geometric mean data is included at the
bottom of the rows. Two rows of geomean are shown: the
first includes only those benchmarks for which all tools were
successful; the second includes all benchmarks, and is shown
for BAMBU and LEGUP. In the standard-optimization results
in Table IV, we see that the commercial tool is able to achieve
the highest Fmax; BAMBU implementations have the lowest
cycle latencies; and BAMBU and LEGUP deliver roughly the
same (and lowest) average wall-clock time. However, we also
observe that no single tool delivers superior results for all
benchmarks. For example, while DWARV does not provide
the lowest wall-clock time on average, it produced the best
results (among the academic tools) for several benchmarks,
including aes decrypt and bellmanford.

For the performance-optimized results in Table V, a key
takeaway is that performance is drastically improved when the

constraints and source code input to the HLS tools are tuned.
For the commercial tool, geomean wall-clock time is reduced
from 37.1 to 19.9µs (1.9×) in the optimized results. For
BAMBU, DWARV and LEGUP, the wall-clock time reductions
in the optimized flow are 1.6×, 1.7× and 2×, respectively,
on average (comparing values in the GEOMEAN row of the
table). It is interesting that, for all the tools, the average
performance improvements in the optimized flow were roughly
the same. From this, we conclude that one can expect ∼1.6-2×
performance improvement, on average, from tuning code and
constraints provided to HLS. We also observe that, from the
performance angle, the academic tools are comparable to the
commercial tool. BAMBU and LEGUP, in particular, deliver
superior wall-clock time to commercial, on average.

For completeness, the area-related metrics are shown in
tables VI and VII for the standard and optimized flows,
respectively. Comparisons between LEGUP and the other
tools are more difficult in this case, owing to architectural
differences between Stratix V and Virtex-7. Among the flows
that target Xilinx, the commercial HLS tool delivers con-
siderably more compact implementations than the academic
tools (much smaller LUT consumption) since we anticipate
it implements more technology-oriented optimizations. For all
flows (including LEGUP), we observe that, in the performance-
optimized flow, more resources are used to improve effectively
performance.

V. DISCUSSON FROM THE TOOL PERSPECTIVE

In this section, we describe the results for the academic HLS
tools from a tool-specific viewpoint and highlight techniques
used to improve performance in each tool.

A. Bambu

BAMBU leverages GCC to perform classical code optimiza-
tions, such as loop unrolling, constant propagation, etc. To
simplify the use of the tool for software designers, its interface
has been designed such that the designer can use the same
compilation flags and directives that would be given to GCC.
In the standard-optimization case, the compiler optimization
level passed to GCC is -O3, without any modifications to the
source code of the benchmarks. In the performance-optimized
study, the source code was modified only in case of sobel,
where we used the same version modified by the LEGUP
team. Loop unrolling was used for adpcm, matrix and sha. On
three benchmarks (gsm, matrix and sobel), GCC vectorization
produced a better wall-time, while function inlining was useful
for gsm, dfadd, dfsin, aes encrypt and decrypt.

BAMBU’s front-end phase implements also operation trans-
formations that are specific for HLS, e.g. by transforming

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2513673, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD, VOL. X, NO. Y, DECEMBER 2015 10

TABLE IV: Standard-Optimization Performance Results. Fmax is Reported in MHz, Wall-clock in µs.

Commercial BAMBU DWARV LEGUP

Benchmark Cycles Fmax Wall-clock Cycles Fmax Wall-clock Cycles Fmax Wall-clock Cycles Fmax Wall-clock
adpcm encode 27250 281 96.87 11179 232 48.14 24454 183 133.67 7883 245 32.12

aes encrypt 3976 345 11.54 1574 252 6.25 5135 201 25.60 1564 395 3.96
aes decrypt 5461 322 16.95 2766 260 10.64 2579 255 10.11 7367 313 23.56

gsm 5244 347 15.12 2805 200 14.01 6866 186 36.90 3966 273 14.52
sha 197867 327 605.08 111762 259 431.62 71163 253 281.52 168886 250 676.90

blowfish 101010 397 254.65 57590 288 200.24 70200 251 280.03 75010 468 160.22
dfadd 552 332 1.66 404 275 1.47 465 215 2.16 650 252 2.58
dfdiv 2068 281 7.35 1925 222 8.65 2274 179 12.69 2046 183 11.20

dfmul 200 281 0.71 174 259 0.67 293 154 1.90 209 186 1.12
dfsin 57564 247 233.08 56021 223 251.09 64428 134 481.02 57858 189 305.79
jpeg 994945 208 4776.73 662380 217 3057.55 748707 ERR ERR 1128109 220 5126.14
mips 4199 281 14.93 4043 259 15.60 8320 370 22.51 5989 487 12.30

motion ERR ERR ERR 127 287 0.44 152 163 0.93 66 338 0.20
satd 87 383 0.23 27 232 0.12 57 134 0.42 46 288 0.16

sobel 45261481 330 137142.29 5983199 276 21665.16 23934323 340 70295.11 7561317 336 22502.58
bellmanford 2838 447 6.35 3218 227 14.17 2319 360 6.44 2444 332 7.37

matrix 363585 281 1292.54 198690 282 704.75 297026 391 759.79 101442 401 253.00

GEOMEAN 11918.22 321.6 37.06 6754.93 248.51 27.1821 10373.59 226.34 45.83 8039.75 292.514 27.48
GEOMEAN (ALL) 5681.2 246.67 23.03 6922.61 284.285 24.35

TABLE V: Performance-Optimized Results. Fmax is Reported in MHz, Wall-clock in µs.

Commercial BAMBU DWARV LEGUP

Benchmark Cycles Fmax Wall-clock Cycles Fmax Wall-clock Cycles Fmax Wall-clock Cycles Fmax Wall-clock
adpcm encode 12350 281 43.90 7077 258 27.40 9122 148 61.47 6635 348 19.06

aes encrypt 3735 331 11.29 1485 249 5.96 3282 250 13.13 1191 408 2.92
aes decrypt 3923 307 12.77 2585 254 10.17 2579 255 10.11 4847 319 15.19

gsm 3584 347 10.34 2128 180 11.83 7308 333 21.92 1931 262 7.36
sha 124339 329 377.87 51399 203 253.35 71163 253 281.52 81786 219 256.74

blowfish 96460 350 275.68 57590 288 200.24 70200 251 280.03 64480 536 120.32
dfadd 552 332 1.66 370 243 1.52 465 215 2.16 319 258 1.24
dfdiv 2068 281 7.35 1374 240 5.73 2846 263 10.83 942 161 5.85

dfmul 200 281 0.71 162 253 0.64 293 154 1.90 105 183 0.57
dfsin 57564 247 233.08 38802 233 166.69 90662 333 271.99 22233 135 165.02
jpeg 602725 209 2882.83 662380 217 3057.55 706151 ERR ERR 1182092 255 4639.66
mips 4199 281 14.93 5783 411 14.06 8320 370 22.51 5989 487 12.30

motion ERR ERR ERR 127 285 0.45 122 167 0.73 66 338 0.20
satd 27 497 0.05 36 442 0.08 54 473 0.11 42 289 0.15

sobel 2475541 330 7495.94 3641402 480 7585.04 3648547 287 12696.94 1565741 489 3201.92
bellmanford 2607 408 6.38 4779 509 9.38 2319 360 6.44 1036 418 2.48

matrix 16408 281 58.33 6178 238 25.90 36162 386 93.73 19003 345 55.01

GEOMEAN 6396.3 320.8 19.9 4704.6 283.9 16.6 7509.6 275.8 27.2 4185.8 299.9 13.6
GEOMEAN (ALL) 5089.0 279.5 18.2 4570.2 299.1 14.9

TABLE VI: Standard-Optimization Area Results.

Commercial BAMBU DWARV LEGUP

Benchmark LUTp BRAMB18 DSP48s LUTp BRAMB18 DSP48s LUTp BRAMB18 DSP48s ALMs M20K DSPs
adpcm encode 4319 0 68 19931 52 64 5626 18 6 2490 0 43

aes encrypt 5802 6 1 8485 4 0 15699 16 3 4263 8 0
aes decrypt 6098 4 1 8747 4 1 12733 16 3 4297 14 0

gsm 5271 8 49 11864 10 75 6442 0 8 4311 1 51
sha 2161 16 0 4213 12 0 10012 0 0 6398 26 0

blowfish 2226 0 0 6837 0 0 7739 0 0 1679 0 0
dfadd 7409 0 0 7250 0 0 7334 0 0 2812 1 0
dfdiv 15107 0 24 11757 0 24 13934 1 40 4679 4 42

dfmul 3070 0 16 3430 0 16 14157 1 40 1464 1 28
dfsin 22719 0 43 21892 0 59 30616 43 43 9099 3 72
jpeg 16192 25 1 46757 154 26 ERR ERR ERR 16276 41 85
mips 1963 3 8 2501 0 8 3904 3 20 1319 0 15

motion ERR ERR ERR 2776 2 0 45826 6 0 6788 0 0
satd 790 0 0 4425 0 0 1411 0 0 2004 0 0

sobel 792 0 6 3106 0 28 1160 0 12 1241 0 36
bellmanford 485 0 0 1046 0 0 633 0 0 493 0 0

matrix 175 0 3 551 0 3 471 0 3 225 0 2

GEOMEAN 2711.75 1.84 4.57 5253.60 2.15 5.30 5148.72 2.43 4.88 2197.66 2.01 5.67
GEOMEAN (ALL) 5754.49 2.76 5.28 2641.94 2.30 6.00

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2513673, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD, VOL. X, NO. Y, DECEMBER 2015 11

TABLE VII: Performance-Optimized Area Results.

Commercial BAMBU DWARV LEGUP

Benchmark LUTp BRAMB18 DSP48s LUTp BRAMB18 DSP48s LUTp BRAMB18 DSP48s ALMs M20K DSPs
adpcm encode 5325 0 116 10546 2 81 13416 0 6 2903 0 57

aes encrypt 5798 6 1 9793 2 1 15699 16 3 3199 0 0
aes decrypt 6370 4 1 12927 2 3 12733 16 3 4894 18 0

gsm 8970 11 49 29646 16 316 6442 0 8 3442 3 59
sha 13105 16 0 14819 12 0 10012 0 0 28289 12 0

blowfish 3433 0 0 6799 0 0 7739 0 0 1648 0 0
dfadd 7409 0 0 6413 0 0 7334 0 0 3506 0 0
dfdiv 15107 0 24 7673 1 76 16209 1 40 16895 9 126

dfmul 3070 0 16 3001 0 16 14157 1 40 1866 0 28
dfsin 22719 0 43 21538 1 111 30616 43 43 10857 3 72
jpeg 16099 25 1 46757 154 26 ERR ERR ERR 16669 41 85
mips 1963 3 8 2305 0 8 3904 3 20 1319 0 15

motion ERR ERR ERR 2678 1 0 49414 6 0 6788 0 0
satd 1704 0 0 2447 2 0 3037 0 0 1959 0 0

sobel 1015 0 3 722 0 0 2877 0 3 698 0 0
bellmanford 1127 0 0 717 0 0 633 0 0 528 1 0

matrix 3406 0 96 10531 0 384 7110 0 3 3747 0 68

GEOMEAN 4575.89 1.88 5.70 5925.67 1.71 7.95 7384.52 2.00 4.45 3159.64 1.92 6.25
GEOMEAN (ALL) 6385.85 2.16 7.54 3644.68 2.21 6.54

multiplications and divisions which are usually very expen-
sive in hardware. BAMBU maps 64-bit divisions onto a C
library function implementing the Newton-Raphson algorithm
for the integer division. This leads to a higher number of
DSPs required by dfdiv and dfsin in the standard-optimzation
case. BAMBU also supports floating-point operations since it
interfaces with FloPoCo library [56].

All functional units are pre-characterized for multiple com-
binations of target devices, bit-widths and pipeline stages.
Hence, BAMBU implements a technology-aware scheduler to
perform aggressive operation chaining and code motion. This
reduces the total number of clock cycles, while respecting
the given timing constraint. Trimming of the address bus was
useful for bellmanford, matrix, satd, and sobel.

Finally, BAMBU adopts a novel architecture for memory
accesses [11]. Specifically, BAMBU builds a hierarchical dat-
apath directly connected to a dual-port BRAM whenever a
local aggregated or a global scalar/aggregate data type is used
by the kernel and whenever the accesses can be determined at
compile time. In this case, multiple memory accesses can be
performed in parallel. Otherwise, the memories are intercon-
nected so that it is also possible to support dynamic resolution
of the addresses. Indeed, the same memory infrastructure
can be natively connected to external components (e.g. a
local scratch-pad memory or cache) or directly to the bus to
access off-chip memory. Finally, if the kernel has pointers as
parameters, it assumes that the objects referred are allocated
on dual-port BRAMs.

The optimized results obtained for blowfish and jpeg are
the same obtained in the first study since we were not able to
identify different options to improve the results.

B. DWARV

Since DWARV is based on CoSy [10], one of the main
advantages is its flexibility to easily exploit standard and
custom optimizations. The framework contains 255 transfor-
mations and optimizations passes available in the form of

stand-alone engines. For the standard-evaluation experiment,
the most important optimizations that DWARV uses are
if-conversion, operation chaining, multiple memories and a
simple (i.e. analysis based only on standard integer types)
bit-width analysis. For the performance-optimized runs, prag-
mas were added to enable loop unrolling. However, not all
framework optimizations are yet fully integrated in the HLS
flow. One of the DWARV restrictions is that it does not
support global variables. As a result, the CHStone benchmarks,
which rely heavily on global variables, had to be rewritten to
transform global variables to function parameters passed by
reference. Besides the effort needed to rewrite code accessing
global memory, some global optimizations across functions are
not considered. Another limitation is a mismatch between the
clock period targeted by operation-chaining and the selection
of IP cores in the target technology (e.g. for a divider unit),
which are not (re)generated on request based on a target fre-
quency. Operation chaining is set to a specific target frequency
for each benchmark (as shown in Table II). However this can
differ significantly from that achievable within the instantiated
IP cores available in DWARV’s IP library, as shown for
example in the dfxxx kernels. DWARV targets mostly small
and medium size kernels. It thus generates a central FSM and
always maps local arrays to distributed logic. This is a problem
for large kernels such as the jpeg benchmark, which could not
be mapped in the available area on the target platform. Another
minor limitation is the transformation – in the compiler back-
end – of switch constructs to if-else constructs. Generating
lower-level switch constructs would improve the aes, mips,
jpeg kernels, that contain multiple switch statements.

C. LegUp

Several methods exist for optimizing LEGUP-produced cir-
cuits: automatic LLVM compiler optimizations [12], user-
defined directives for activating various hardware specific
features, and source code modifications. Since LEGUP is built
within LLVM, users can utilize LLVM optimization passes

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2513673, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD, VOL. X, NO. Y, DECEMBER 2015 12

with minimal effort. In the context of hardware circuits, for
the performance-optimized runs, function inlining and loop
unrolling provided benefits across multiple benchmarks. Func-
tion inlining allows the hardware scheduler to exploit more
instruction-level parallelism and simplify the FSM. Similarly,
loop unrolling exposes more parallelism across loop iterations.
The performance boost associated with inlining and unrolling
generally comes at the cost of increased area.

LEGUP also offers many hardware optimizations that users
can activate by means of tcl directives, such as activating
loop pipelining or changing the target clock period. Loop
pipelining allows consecutive iterations of a loop to begin
execution before the previous iteration has completed, reduc-
ing the overall number of clock cycles. Longer clock periods
permit more chaining, reducing cycle latency. If the reduction
in cycle latency does not exceed the amount by which the
clock period lengthens, wall-clock time will be also improved.

Manual source code modifications can be made to assist
LEGUP in inferring parallelism within the program. One such
modification is to convert single-threaded execution to multi-
threaded execution using pthreads/OpenMP, whereby LEGUP
synthesizes the multiple parallel threads into parallel hardware
accelerators. This optimization was applied for all of the df
benchmarks. In the df benchmarks, a set of inputs is applied to
a kernel in a data-parallel fashion – there are no dependencies
between the inputs. Such a situation is particularly desir-
able for LEGUP’s multi-threading synthesis: multiple identical
hardware kernels are instantiated, each operating in parallel on
disjoint subsets of the input data.

VI. CONCLUDING REMARKS

To the authors’ knowledge, this paper represents the first
broad evaluation of several HLS tools. We presented an
extensive survey and categorization for past and present
hardware compilers. We then described the optimizations on
which recent and ongoing research in the HLS community is
focussed. We experimentally evaluated three academic HLS
tools, BAMBU, DWARV and LEGUP, against a commercial
tool. The methodology aims at providing a fair comparison
of tools, even if they are built within different compiler
frameworks and target different FPGA families. The results
shows that each HLS tool can significantly improve the perfor-
mance with benchmark-specific optimizations and constraints.
However, software engineers need to take into account that
optimizations that are necessary to realize high performance
in hardware (e.g. enabling loop pipelining, removing control
flow, etc.) differ significantly from software-oriented ones
(e.g. data re-organization for cache locality).

Overall, the performance results showed that academic
and commercial HLS tools are not drastically far apart in
terms of quality, and that no single tool producted the best
results for all benchmarks. Obviously, despite this, it should
nevertheless be noted that the commercial compiler supports
more features, allowing multiple input and output languages,
the customization of the generated kernels in terms of interface
types, memory bank usage, throughput, etc., while at the same
time also being more robust than the academic tools.

REFERENCES

[1] S. Borkar and A. A. Chien. The Future of Microprocessors. Communi-
cations of the ACM, 54:67–77, May 2011.

[2] P. Coussy and A. Morawiec. High-Level Synthesis: from Algorithm to
Digital Circuit. Springer, 2008.

[3] H.-Y. Liu, M. Petracca, and L. P. Carloni, Compositional System-Level
Design Exploration with Planning of High-level Synthesis. In IEEE/ACM
DATE, pp. 641–646, 2012.

[4] A. Putnam, A. Caulfield, et al. A Reconfigurable Fabric for Accelerating
Large-Scale Datacenter Services. IEEE/ACM ISCA, pages 13-24, 2014.

[5] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. Optimizing
FPGA-based Accelerator Design for Deep Convolutional Neural Net-
works. In ACM FPGA, pages 161-170. 2015.

[6] W. Meeus, K. Van Beeck, T. Goedem, J. Meel, D. Stroobandt. An
Overview of Todays High-Level Synthesis Tools. In Design Automation
for Embedded Systems, 2012, pp. 31-51.

[7] R. Nane, V.-M. Sima, B. Olivier, R. Meeuws, Y. Yankova, K. Bertels.
DWARV 2.0: A CoSy-based C-to-VHDL Hardware Compiler. In FPL, pp.
619-622. 2012.

[8] C. Pilato and F. Ferrandi. Bambu: A Modular Framework for the High
Level Synthesis of Memory-intensive Applications. In FPL, pp. 1–4, 2013.

[9] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J.H. Anderson,
S. Brown, T. Czajkowski. LegUp: High-Level Synthesis for FPGA-based
Processor/Accelerator Systems. In ACM FPGA, pp. 33-36. 2011.

[10] ACE- Associated Compiler Experts. CoSy. [Online]. Available:
http://www.ace.nl

[11] C. Pilato, F. Ferrandi, and D. Sciuto. A Design Methodology to
Implement Memory Accesses in High-Level Synthesis. In IEEE/ACM
CODES+ISSS, pp. 49–58, 2011.

[12] C. Lattner, V. Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In IEEE/ACM CGO, pp75-88,
2004.

[13] K. Wakabayashi, T. Okamoto. C-based SoC Design Flow and EDA
Tools: An ASIC and System Vendor Perspective. In IEEE TCAD, vol.
19, no. 12, pp. 1507-1522, 2000.

[14] BlueSpec Inc. High-Level Synthesis Tools. [Online]. Available:
http://bluespec.com/high-level-synthesis-tools.html

[15] R. Nikhil. Bluespec System Verilog: Efficient, Correct RTL from High-
Level Specifications. In IEEE/ACM MEMOCODE, pp. 69-70. 2004.

[16] S.C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, R.R. Taylor,
R. Reed. PipeRench: A Reconfigurable Architecture and Compiler. In
IEEE Computer, pp. 70-77, 2000.

[17] N. Kavvadias, K. Masselos. Automated Synthesis of FSMD-Based Ac-
celerators for Hardware Compilation. In IEEE ASAP, pp. 157-160. 2012.

[18] Impulse Accelerated Technologies. Impulse CoDeveloper C-to-FPGA
Tools. [Online]. Available: http://www.impulseaccelerated.com/products

universal.htm
[19] Mentor Graphics. DK Design Suite: Handel-C to FPGA for

Algorithm Design. [Online]. Available:
http://www.mentor.com/products/fpga/handel-c/dk-design-suite

[20] W.A. Najjar, W. Bohm, B.A. Draper, J. Hammes, R. Rinker, J.R.
Beveridge, M. Chawathe, C. Ross. High-Level Language Abstraction for
Reconfigurable Computing. In IEEE Computer 2003. pp. 63-69.

[21] T. Callahan, J. Hauser, R. John, J. Wawrzynek. The Garp Architecture
and C Compiler. In IEEE Computer, pp. 62-69, 2000.

[22] M.B. Gokhale, J.M. Stone. NAPA C: Compiling for a Hybrid RISC/F-
PGA Architecture. In IEEE FCCM, pp. 126-135, 1998.

[23] Y Explorations. eXCite: C to RTL Behavioral Synthesis. [Online].
Available: http://www.yxi.com/products.php

[24] J. Villarreal, A. Park, W. Najjar, R. Halstead. Designing Modular
Hardware Accelerators in C with ROCCC 2.0. In IEEE FCCM, pp. 127-
134. 2010.

[25] Calypto Design Systems. Catapult: Product Family Overview. [Online].
Available: http://calypto.com/en/products/catapult/overview

[26] Cadence. C-to-Silicon Compiler. [Online]. Available:
http://www.cadence.com/products/sd/silicon compiler/pages/default.aspx

[27] S. Gupta, N. Dutt, R. Gupta, A. Nicolau. SPARK: A High-Level Synthesis
Framework for Applying Parallelizing Compiler Transformations. In
VLSI Design, pp. 461-466, 2003.

[28] Altium. Altium Designer: A Unified Solution. [Online]. Available:
http://www.altium.com/en/products/altium-designer

[29] Universite de Bretagne-Sud. GAUT – High-Level Synthesis Tool from C
to RTL. [Online]. Available: http://hls-labsticc.univ-ubs.fr/

[30] J.L. Tripp, M.B. Gokhale, K.D. Peterson. Trident: From High-Level
Language to Hardware Circuitry. In IEEE Computer, pp. 28-37, 2007.

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2513673, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD, VOL. X, NO. Y, DECEMBER 2015 13

[31] J.L. Tripp, P.A. Jackson, B. Hutchings. Sea Cucumber: A Synthesizing
Compiler for FPGAs. In FPL, pp 875-885, 2002.

[32] Altera. C2H Compiler - Discontinued. [Online]. Available:
www.altera.com/literature/pcn/pdn1208.pdf

[33] Synopsys. Synphony C Compiler. [Online]. Available:
https://www.synopsys.com/Tools/Implementation/RTLSynthesis/Pp.
/SynphonyC-Compiler.aspx

[34] V. Kathail,S. Aditya, R. Schreiber, B. Rau, D. Cronquist, M. Sivara-
man. PICO (Program In, Chip Out): Automatically Designing Custom
Computers. In IEEE Computer, pp. 39-47, 2012.

[35] BDTi. BDTI High-Level Synthesis Tool Certification Program Results.
[Online]. Available:
http://www.bdti.com/Resources/BenchmarkResults/HLSTCP

[36] Northwestern University. MATCH Compiler. [Online]. Available:
http://www.ece.northwestern.edu/cpdc/Match/

[37] Xilinx. AccelDSP Synthesis Tool. [Online]. Available:
http://www.xilinx.com/tools/acceldsp.htm

[38] Putnam, A. and Bennett, D. and Dellinger, E. and Mason, J. and
Sundararajan, P. and Eggers, S. CHiMPS: A C-Level Compilation Flow
for Hybrid CPU-FPGA Architectures. In FPL, pp. 173-178, 2008.

[39] Kiran Bondalapati , Pedro Diniz , Phillip Duncan , John Granacki , Mary
Hall , Rajeev Jain , Heidi Ziegler. DEFACTO: A Design Environment for
Adaptive Computing Technology. In IEEE RAW, 1999.

[40] Maxeler Technologies. MaxCompiler. [Online]. Available:
https://www.maxeler.com/products/software/maxcompiler/

[41] Greaves, David and Singh, Satnam. Kiwi: Synthesis of FPGA Circuits
from Parallel Programs. In IEEE FCCM, pp. 3-12, 2008.

[42] Forte Design Systems. Cynthesizer 5. [Online]. Available:
http://www.forteds.com/products/cynthesizer.asp

[43] Xilinx Inc. Vivado Design Suite - VivadoHLS. [Online]. Available:
http://www.xilinx.com/products/design-tools/vivado/index.htm

[44] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, Z. Zhang.
High-Level Synthesis for FPGAs: From Prototyping to Deployment. In
IEEE TCAD, pp. 473-491, 2011.

[45] Giang Nguyen Thi Huong, and Seon Wook Kim. GCC2Verilog Compiler
Toolset for Complete Translation of C Programming Language into
Verilog HDL. In ETRI Journal, vol. 33, no. 5, pp. 731-740, 2011.

[46] L. Stok. Data Path Synthesis. Integration, vol. 18, no. 1, pp. 1–71, 1994.
[47] C. Pilato, P. Mantovani, G. Di Guglielmo, and L. Carloni. System-

Level Memory Optimization for High-Level Synthesis of Component-
based SoCs. In IEEE CODES+ISSS, 2014.

[48] B.R. Rau. Iterative Modulo Scheduling: An Algorithm for Software
Pipelining Loops. In IEEE/ACM MICRO, pp. 63-74. 1994.

[49] J. Llosa, A. Gonzlez, E. Ayguad, M. Valero. Swing Modulo Scheduling:
A Lifetime-Sensitive Approach. In IEEE/ACM PACT, 1996.

[50] M. Benabderrahmane, L. Pouchet, A. Cohen, C. Bastoul. The Polyhe-
dral Model Is More Widely Applicable Than You Think. In Compiler
Construction, pp. 208-303, 2010.

[51] Y. Wang, P. Li, J. Cong. Theory and Algorithm for Generalized Memory
Partitioning in High-Level Synthesis. In ACM FPGA, pp. 199-208, 2014.

[52] W. Zuo, P. Li, D. Chen, L. Pouchet, S. Zhong, J. Cong. Improv-
ing Polyhedral Code Generation for High-Level Synthesis. In IEEE
CODES+ISSS, 2013.

[53] J. Cong, M. Huang, P. Zhang. Combining Computation and Communi-
cation Optimizations in System Synthesis for Streaming Applications. In
ACM FPGA, pp. 213-222, 2014.

[54] F. de Dinechin. Multiplication by Rational Constants. IEEE TCAS II:
Express Briefs, vol. 59, pp. 98–102, Feb 2012.

[55] M. Kumm, M. Hardieck, J. Willkomm, P. Zipf, and U. Meyer-Baese.
Multiple Constant Multiplication with Ternary Adders. In FPL, pp. 1–8,
2013.

[56] F. de Dinechin and B. Pasca. Designing Custom Arithmetic Data Paths
with FloPoCo. IEEE Design Test of Computers, vol. 28, pp. 18–27, 2011.

[57] A. Kondratyev, L. Lavagno, M. Meyer, and Y. Watanabe. Exploiting
Area/Delay Tradeoffs in High-Level Synthesis. In IEEE/ACM DATE, pp.
1024–1029, 2012.

[58] T. Jiang, X. Tang, and P. Banerjee. Macro-Models for High Level Area
and Power Estimation on Fpgas. In IEEE GLSVLSI, pp. 162–165, 2004.

[59] D. Zaretsky, G. Mittal, R. Dick, and P. Banerjee. Balanced Scheduling
and Operation Chaining in High-Level Synthesis for FPGA Designs. In
IEEE ISQED, pp. 595–601, 2007.

[60] H. Zheng, S. T. Gurumani, K. Rupnow, and D. Chen. Fast and Effective
Placement and Routing Directed High-Level Synthesis for FPGAs. In
ACM FPGA, pp. 1–10, 2014.

[61] G. Lakshminarayana, A. Raghunathan, and N. Jha. Incorporating Spec-
ulative Execution into Scheduling of Control-Flow Intensive Behavioral
Descriptions. In IEEE/ACM DAC, pp. 108–113, 1998.

[62] S. Gupta, N. Savoiu, N. Dutt, R. Gupta, and A. Nicolau. Conditional
Speculation and Its Effects on Performance and Area for High-Level
Synthesis. In ACM ISSS, pp. 171–176, 2001.

[63] R. Cordone, F. Ferrandi, M. D. Santambrogio, G. Palermo, and D.
Sciuto. Using Speculative Computation and Parallelizing Techniques to
Improve Scheduling of Control Based Designs. In IEEE/ACM ASP-DAC,
pp. 898–904, 2006.

[64] H. Zheng, Q. Liu, J. Li, D. Chen, and Z. Wang. A Gradual Scheduling
Framework for Problem Size Reduction and Cross Basic Block Paral-
lelism Exploitation in High-Level Synthesis. In IEEE/ACM ASP-DAC,
pp. 780–786, 2013.

[65] J. Choi, S. Brown, J. Anderson. From Software Threads to Parallel
Hardware in High-Level Synthesis for FPGAs. In IEEE FPT, pp. 270-
277, Dec. 2013.

[66] D. Singh, T. Czajkowski, A. Ling. Harnessing the Power of FPGAs
Using Altera’s OpenCL Compiler. In ACM FPGA, pp. 5-6, 2013.

[67] S.A. Mahlke, R.E. Hank, R.A. Bringmann, J.C. Gyllenhaal, D.M.
Gallagher, and W-m.W. Hwu. Characterizing the Impact of Predicated
Execution on Branch Prediction. In ACM/IEEE MICRO, pp. 217-227,
1994.

[68] N.J. Warter, D.M. Lavery, W.-M.W. Hwu. The Benefit of Predicated
Execution for Software Pipelining. In Hawaii International Conference
on System Sciences, 1993.

[69] M. Hohenauer, F. Engel, R. Leupers, G. Ascheid, H. Meyr, G. Bette.
Retargetable Code Optimization for Predicated Execution. In IEEE/ACM
DATE, pp. 1492-1497. 2008.

[70] R. Nane, V.-M. Sima, K. Bertels. A Lightweight Speculative and
Predicative Scheme for Hardware Execution. In IEEE ReConFig, pp. 1-6,
2012.

[71] Altera Corp. Stratix V FPGA Data Sheet, 2015.
[72] Xilinx Inc. Virtex-7 FPGA Data Sheet, 2015.
[73] Y. Hara, H. Tomiyama, S. Honda, H. Takada. Proposal and Quantitative

Analysis of the CHStone Benchmark Program Suite for Practical C-based
High-Level Synthesis. In Information Processing, pp. 242-254, 2009.

Razvan Nane is a Postdoctoral researcher at Delft
University of Technology. He received his Ph.D. in
Computer Engineering from Delft University of
Technology, The Netherlands in 2014. He is the
main developer of the DWARV C-to-VHDL hard-
ware compiler. His main research interests are high-
level synthesis for reconfigurable architectures, hard-
ware/software co-design methods for heterogeneous
systems, and compilation and simulation techniques
for emerging memristor-based in-memory comput-
ing high-performance architectures.

Vlad-Mihai Sima received his Ph.D. in Computer
Engineering from the Delft University of Technol-
ogy, Netherlands in 2013 and his M.Sc. in Com-
puter Science and Engineering from Universitatea
Politehnica, Bucharest, Romania in 2006. During
his Ph.D., and while a researcher at TU Delft, he
was closely involved in the development of various
research related to high-level synthesis for hetero-
geneous architectures, namely the DWARV C-to-
VHDL compiler. His main research interests include
high performance computing, high-level synthesis

and heterogeneous architectures. Concluding his appointment with TU Delft,
he is currently the head of research at Bluebee, a startup company focusing
on providing high-performance solutions for the genomics market.

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2513673, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD, VOL. X, NO. Y, DECEMBER 2015 14

Christian Pilato (S’08–M’12) is a Postdoctoral Re-
search Scientist at Columbia University, New York,
NY, USA. He received his Ph.D. in Information
Technology from Politecnico di Milano, Milan, Italy
in 2011, where he was a research associate until
2013. During this period, he was one of the main
developers of the BAMBU HLS tool. His research
interests include high-level synthesis with emphasis
on memory aspects, system-level design of het-
erogeneous architectures for energy-efficient high
performance, along with issues related to physical

design. He is actively involved in the technical program committees of several
EDA conferences (e.g. DATE, FPL) and he is a member of IEEE and ACM.

Jongsok Choi (S’12) is a Ph.D. candidate in the
Department of Electrical and Computer Engineering
at the University of Toronto (U of T), Toronto, ON,
Canada. He received the M.A.Sc. degree from the
U of T, and the B.A.Sc. degree from the University
of Waterloo, Waterloo, ON, Canada. He has been
the primary developer of the system-level func-
tionality within LEGUP, including the support for
Pthreads/OpenMP-driven hardware parallelization,
and the automatic generation of hybrid processor/ac-
celerator systems. Jongsok has previously worked at

Altera, Qualcomm, Marvell Semiconductor, and STMicroelectronics.

Blair Fort (S’06) received the B.A.Sc. degree in
Engineering Science and M.A.Sc. degree in electri-
cal and computer engineering from the University
of Toronto (U of T), Toronto, ON, Canada, in 2004
and 2006, respectively. He is currently pursing the
Ph.D. degree in electrical and computer engineering
at the U of T. He has been a member of the technical
staff at Altera Corporation’s Toronto Technology
Centre since 2006.

Andrew Canis (S’06) received the Ph.D. degree in
computer engineering in 2015 from the University
of Toronto, Toronto, ON, Canada. He received the
B.A.Sc. degree in computer engineering in 2008
from the University of Waterloo, Waterloo, ON,
Canada. During his studies, he held internships at
Altera, Sun Microsystems Labs, and at Oracle Labs
where he researched circuit optimization algorithms.
Currently, he is a co-founder and the chief executive
officer of LegUp Computing Inc. Dr. Canis received
the Natural Sciences and Engineering Research

Council of Canada Alexander Graham Bell Canada Graduate Scholarship for
both his Ph.D. and M.A.Sc. studies. His research interests include high-level
synthesis, reconfigurable computing, embedded system-on-chip design, and
electronic design automation for FPGAs.

Yu Ting Chen (S’15) is a second-year M.A.Sc. stu-
dent studying at the University of Toronto, Toronto,
ON, Canada. She is currently working with the
LEGUP team and her research focuses on improving
memory performance and reducing the memory bot-
tleneck in LEGUP-generated hardware for parallel
programs.

Hsuan Hsiao (S’15) received the B.A.Sc. in com-
puter engineering from the University of Toronto
(U of T), Toronto, ON, Canada, in 2014. She is
currently an M.A.Sc. candidate in the department
of electrical and computer engineering at the U of
T. Her research interests lie in the area of high-level
synthesis with reduced width datapaths.

Stephen Brown (M’90) is a Professor with the
University of Toronto, Toronto, ON, Canada, and
is the Director of the Worldwide University Pro-
gram at Altera. From 2000 to 2008, he was the
Director of Research and Development with the
Altera Toronto Technology Center. He is an author
of more than 70 scientific publications and is the co-
author of three textbooks: Fundamentals of Digital
Logic with VHDL Design (New York: McGraw-Hill,
2004), Fundamentals of Digital Logic with Verilog
Design (New York: McGrawHill, 2002), and Field-

Programmable Gate Arrays (Kluwer Academic, 1992). His current research
interests include computer-aided design algorithms, field-programmable very
large scale integration technology, and computer architecture. He received the
Canadian Natural Sciences and Engineering Research Councils 1992 Doctoral
Prize for the Best Doctoral Thesis in Canada. He has received a number of
awards for excellence in teaching.

Fabrizio Ferrandi (M’95) received his Laurea (cum
laude) in Electronic Engineering in 1992 and the
Ph.D. degree in Information and Automation Engi-
neering (Computer Engineering) from the Politec-
nico di Milano, Milan, Italy, in 1997. He joined
the faculty of Politecnico di Milano in 2002, where
currently, he is an Associate Professor at the Diparti-
mento di Elettronica, Informazione e Bioingegneria.
He has published over 100 papers. His research
interests include synthesis, verification, simulation
and testing of digital circuits and systems. Fabrizio

Ferrandi is a Member of IEEE, of the IEEE Computer Society, of the Test
Technology Technical Committee and of European Design and Automation
Association – EDAA.

Jason Anderson (S’96–M’05) received the
B.Sc. degree in computer engineering from the
University of Manitoba, Winnipeg, MB, Canada,
and the M.A.Sc. and Ph.D. degrees in electrical
and computer engineering from the University
of Toronto (U of T), Toronto, ON, Canada. He
joined the Field-Programmable Gate Array (FPGA)
Implementation Tools Group, Xilinx, Inc., San
Jose, CA, USA, in 1997, where he was involved in
placement, routing, and synthesis. He is currently
an Associate Professor with the Department of

electrical and computer Engineering, U of T, and holds the Jeffrey Skoll
Endowed Chair in Software Engineering. He has authored over 70 papers
in refereed conference proceedings and journals, and holds 26 issued
U.S. patents. His current research interests include computer-aided design,
architecture, and circuits for FPGAs.

Koen Bertels is Professor and Head of the Com-
puter Engineering Laboratory at Delft University of
Technology. His research focuses on heterogeneous
multicore computing, investigating topics ranging
from compiler technology, runtime support and ar-
chitecture. He recently started working on quantum
computing as a principal investigator in the Qutech
research center. He served as general and program
chair for various conferences such as FPL, RAW,
ARC. He co-authored more than 30 journal papers
and more than 150 conference papers.

