
CGO 2026 – SODA tutorial

Bambu: Open-Source HLS for Automated
FPGA/ASIC Acceleration

31.01.2026 | Serena Curzel

Outline

POLITECNI CO DI MILA NO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 2

1. Bambu HLS

Synthesis flow, inputs, outputs

Quality of results

Hands-on exercises

2. Verification

Hands-on exercises

3. Custom data formats: TrueFloat

Hands-on exercises

4. Interfaces and Caches

Hands-on exercises

5. Compiler-driven innovation: Bambu + MLIR

6. Multi-threaded accelerators: SPARTA

POLITECNICO DI MI LANO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 3

Tutorial Colab
Notebook

https://github.com/ferrandi/PandA-
bambu/tree/dev/panda/documentation/bambu101

Bambu HLS

01

4

Bambu: a modern open-source HLS tool

POLITECNICO DI MI LANO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 5

High-Level Synthesis:
• High-level behavioral design through sw programming

languages
• Automated translation to Register-Transfer Level
• Like compilers, but for hardware

→ Increased performance of FPGA/ASIC made
available to software developers without hardware
design expertise

Bambu: a modern HLS tool

POLITECNICO DI MI LANO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 6

Bambu HLS
• Developed and maintained by the PandA group at

Politecnico di Milano since 15+ years
• Open-source

Synthesis flow:
• Compilation and optimization of the

intermediate representations (IR)
• Allocation of resources
• Scheduling of operations
• Binding operations to resources
• Generation of synthesizable RTL

F. Ferrandi et al., Invited: Bambu: an Open-Source Research Framework for the High-Level
Synthesis of Complex Applications, 58th ACM/IEEE Design Automation Conference (DAC),
2021.

Bambu: a modern HLS tool

POLITECNI CO DI MILA NO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 7

Inputs:
• C/C++/LLVM IR

• Frontend compilation through GCC or Clang
• Complete support for ANSI C (except for recursion)

• Pointers, user-defined data types, etc..
• Support for STL-like C++ structures
• Support for fixed-point HLS types

• Command-line optimization directives and constraints,
pragmas

• Library of functional units characterized for each target
• Performance estimation essential for scheduling and

optimization

Bambu: a modern HLS tool

POLITECNICO DI MI LANO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 8

Outputs:
• Synthesizable Verilog or VHDL

• Target-specific
• FPGA targets from AMD/Xilinx, Intel/Altera,

Lattice, NanoXplore
• ASIC targets through OpenROAD (Nangate 45,

ASAP7)

• Automatically generated testbench
• RTL simulation with Verilator/Modelsim/XSIM

• Scripts for logic synthesis/implementation
• Vivado/Quartus/Diamond…

Bambu quality of results: CHStone

POLITECNICO DI MI LANO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 9

Speedup and area consumption over commercial HLS tool across different Bambu configurations.
Latency is measured in ns (clock cycles * achieved period post-implementation). > 1 is better.
Area is measured in Equivalent LUTs (BRAMs * 40 + DRAMs * 40 + DSPs * 40 + Registers * 0.5 + LUTs). < 1 is better.

Bambu quality of results: CHStone

POLITECNICO DI MI LANO De partment o f Electron ics, In formation an d Bio eng ine erin g 1 0

Pareto plots (Latency vs. Area) for selected benchmarks. Points marked with x are dominated.

Bambu quality of results

POLITECNICO DI MI LANO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 1 1

Other benchmarks + raw data at: https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results

https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results
https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results
https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results
https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results
https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results
https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results
https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results

Verification

02

1 2

Accelerator – host co-simulation

POLITECNICO DI MI LANO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 1 3

• HW/SW co-simulation framework
• RTL testbench and infrastructure

automatically generated by Bambu
• Reports number of clock cycles with the given

input data
• Compares HW results with SW, or defers

verification to the testbench code

M. Fiorito et al., Augmented Co-Simulation for Fast Functional and System-Level Verification
of HLS Accelerators, 44th IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2025.

Custom data formats: TrueFloat

03

1 4

Custom floating-point formats

POLITECNICO DI MI LANO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 1 5

Any number of exponent bits Any number of mantissa bits

But also:

• Custom exponent bias

• Rounding to nearest even or truncation

• IEEE exceptions, saturation, or overflow

• Hidden one, or not

• Subnormals, or not

• Dynamic or static sign

Custom floating-point formats

POLITECNICO DI MI LANO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 1 6

• Fewer bits

• Tailored format

• Assessing impact on accuracy

• Design methodology (libraries? HLS?)

• Wide design space to explore

Opportunities Challenges

Improved Quality
of Results (QoR)

• Faster functional units

• Smaller logic

• More accelerators in parallel

TrueFloat

POLITECNICO DI MI LANO De partment o f Electron ics, In formation an d Bio eng ine erin g 1 7

• Users specify the required format, Bambu generates optimized arithmetic units
• Integrated within the HLS flow -> QoR higher than inserting «black box» IPs
• Effortless translation between encodings through command-line options

M. Fiorito et al., TrueFloat: A Templatized Arithmetic Library for HLS Floating-Point Operators. In Embedded Computer Systems: Architectures, Modeling, and
Simulation. SAMOS 2023.

TrueFloat

POLITECNICO DI MI LANO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 1 8

M. Fiorito et al., TrueFloat: A Templatized Arithmetic Library for HLS Floating-Point Operators. In Embedded Computer Systems: Architectures, Modeling, and
Simulation. SAMOS 2023.

• Input code contains standard floating-
point operations and types

• Per-function specialization string
• Bambu handles type replacement,

conversions, arithmetic units
generation

TrueFloat

POLITECNICO DI MI LANO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 1 9

M. Fiorito et al., TrueFloat: A Templatized Arithmetic Library for HLS Floating-Point Operators. In Embedded Computer Systems: Architectures, Modeling, and
Simulation. SAMOS 2023.

FPBlender:
• Compiler pass handling FP operations in Bambu
• Uses results from previous analysis passes
• Informs subsequent transformations

TrueFloat library:
• Templatized soft-float implementations in C using

basic integer operations
• Input operands and specialization arguments
• Inter-procedural analysis and constant

propagation optimize the code

TrueFloat

POLITECNICO DI MI LANO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 20

Testing TrueFloat configurations is particularly easy through the Bambu cosimulation framework
• Example: main program which runs the simulation and plots the outputs

• Use the same main program, plot outputs from the simulated accelerator
• Assess errors visually

S. Curzel and M. Gribaudo. Custom Floating-Point Computations for the Optimization of ODE Solvers on FPGA. In: Workshop on Parallel Programming and
Run-Time Management Techniques for Many-Core Architectures and Workshop on Design Tools and Architectures for Multicore Embedded Computing
Platforms (PARMA-DITAM). 2025

Interfaces and Caches

04

21

Interface generation

POLITECNICO DI MI LANO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 22

Supported protocols:
• Minimal Memory Interface (simple Bambu bus)
• FIFO, AxiStream
• Handshake
• Array
• AXI4-Master

(Mostly) compatible with Vitis
HLS interfaces

Requested by the user through --generate-interface=INFER and either
• An architecture.xml file
• Interface pragmas in the code <?xml version="1.0"?>

<module>

<function name=»bfs" symbol=»bfs">

<bundles>

<bundle alignment="1" bank_number="0" mode="m_axi" name="bus"></bundle>

<bundle mode="bus" name="edges"></bundle>

<bundle mode="bus" name="level"></bundle>

...

#pragma HLS bus mode = m_axi
#pragma HLS interface port = edges mode = bus
#pragma HLS interface port = level mode = bus
void bfs(edge_t* edges, level_t* level, ...)

Interface generation – Axi4/AxiS

POLITECNICO DI MI LANO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 23

Support to Axi4 master and AxiS interfaces
• Easier integration with ARM processor (e.g., on the NG-ULTRA board)
• Automatic generation of AXI testbench supported
• Memory latency can be configured

Channel architecture for read transaction with Axi4
(AMBA®AXI and ACE Protocol Specification)

Channel architecture for write transaction with Axi4
(AMBA®AXI and ACE Protocol Specification)

Interface generation - Caches

POLITECNICO DI MI LANO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 24

Support for caches on AXI4
interfaces:

• Customizable cache
parameters: line size, cache
size, replacement/write
policy...

• May improve performance
when data accesses are
contiguous and predictable

Compiler-driven innovation: Bambu + MLIR

05

25

Compiler-driven innovation: MLIR

POLITECNICO DI MI LANO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 26

• Multi-Level Intermediate
Representation (MLIR), infrastructure
for domain-specific compilers
• Used predominantly for AI

• MLIR -> LLVM dialect -> LLVM IR ->
Bambu
• Any design written in MLIR can be

synthesized!

The SODA Synthesizer

POLITECNICO DI MI LANO De partment o f Electron ics, In formation an d Bio eng ine erin g 27

S. Curzel et al., End-to-End Synthesis of Dynamically Controlled Machine Learning Accelerators, in IEEE Transactions on Computers, vol. 71, no. 12, pp.
3074-3087, 1 Dec. 2022, doi: 10.1109/TC.2022.3211430
N. B. Agostini et al., Bridging Python to Silicon: The SODA Toolchain, in IEEE Micro, vol. 42, no. 5, pp. 78-88, 1 Sept.-Oct. 2022, doi: 10.1109/MM.2022.3178580

• Modular, multi-level, open-source hardware
compiler from high-level programming
frameworks to silicon

• Compiler-based frontend based on MLIR (SODA-
OPT)

• Compiler-based HLS backend (Bambu)
• Generates synthesizable Verilog for a variety of

FPGA and ASIC targets
• Optimizations at all levels are performed as

compiler passes

The SODA Synthesizer

POLITECNICO DI MI LANO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 28

SODA Bambu script:

bambu -v3 --print-dot \

-lm --soft-float \

--compiler=I386_CLANG16 \

--device=nangate45 \

--clock-period=5 \

--experimental-setup=BAMBU-BALANCED-MP \

--channels-number=2 \

--memory-allocation-policy=ALL_BRAM \

--disable-function-proxy \

--generate-tb=main_kernel_testbench.c \

--simulate --simulator=VERILATOR \

--verilator-parallel \

--top-fname=main_kernel \

input.ll 2>&1 | tee bambu-log

ASIC OpenRoad
target

Shortcut for many
other
optimizations

Memory-level
parallelism

CNN acceleration on FPGA

POLITECNICO DI MI LANO De partment o f Electron ics, In formation an d Bio eng ine erin g 29

NG-Ultra

LUTS 4627

Registers 5714

Frequency 45.7 MHz

DSP 54

MEM 34

cycles 169,649

latency 3.7ms

• Neural network trained and
quantized to 8-bit to reduce
area and improve hardware
performance

• TFLite to MLIR export
• Bambu synthesis

CNN trained on MNIST

Synthesis result targeting an
NG-Ultra FPGA

Bambu + MLIR: high-level loop pipelining

POLITECNICO DI MI LANO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 30

• Goal: provide a pre-optimized
IR to the HLS tool (with
pipelined loops)

• Bambu HLS
• Can synthesize LLVM IR

(natural target for MLIR)
• Does not support loop

pipelining (*)

(*) now available
upon request

S. Curzel et al., Pre-Scheduling of Affine Loops for HLS Pipelining. In: Euro-Par 2024: Parallel Processing Workshops. 2025, pp. 431–442

Bambu + MLIR: high-level loop pipelining

POLITECNICO DI MI LANO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 31

S. Curzel et al., Pre-Scheduling of Affine Loops for HLS Pipelining. In: Euro-Par 2024: Parallel Processing Workshops. 2025, pp. 431–442

Bambu + MLIR: high-level loop pipelining

POLITECNICO DI MI LANO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 32

S. Curzel et al., Pre-Scheduling of Affine Loops for HLS Pipelining. In: Euro-Par 2024: Parallel Processing Workshops. 2025, pp. 431–442

Forward results if needed

soda-opt input.mlir -pass-pipeline="func.func(forward-results)" -o=forwarded.mlir"

Apply if conversion where possible

soda-opt forwarded.mlir -pass-pipeline="func.func(if-conversion)" -o=converted.mlir"

Extract data flow graph from the mlir code.

soda-opt converted.mlir -pass-pipeline="func.func(data-flow-graph)"

Generate default resources.xml file

python3 $ROOT/output/generate_hatschet_resources.py

Obtain a schedule for the given data flow graph, scheduler, and resource file.

hatschet dfg.graphml --scheduler=MOOVAC --resource=resources.xml --writeschedule=schedule.csv

Rebuild mlir following the scheduled received from HatSchet.

soda-opt converted.mlir -pass-pipeline="func.func(loop-scheduling {schedule=schedule.csv})"

-o=scheduled.mlir

Lower, translate to LLVM IR, synthesize with Bambu.

soda-opt scheduled.mlir -lower-affine ...

Multi-threaded accelerators: SPARTA

06

33

Synthesis of PARallel multi-Threaded
Accelerators (SPARTA)

POLITECNICO DI MI LANO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 34

G. Gozzi et al., SPARTA: High-Level Synthesis of Parallel Multi-Threaded Accelerators. In: ACM Trans. Reconfigurable Technol. Syst. 18.1 (Dec. 2024)

• Starts from high-level languages (C/C++)
annotated with OpenMP pragmas
• Parallel, for, sections
• Reduction, shared, private, firstprivate
• Critical, barrier

• Produces an accelerator with multiple cores that
can execute concurrently

Parallel region (N Channels)

External memory

P
a

ra
lle

l re
g

io
n

Thread synchronization

SPARTA accelerator Sequential computation

Core N

Local

memory

NoC

CS

manager

Core 0

Local

memory

Core 1

Local

memory

CS

manager
Shared memory

Arbiter

CS

manager

SPARTA synthesis flow

POLITECNICO DI MI LANO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 35

G. Gozzi et al., SPARTA: High-Level Synthesis of Parallel Multi-Threaded Accelerators. In: ACM Trans. Reconfigurable Technol. Syst. 18.1 (Dec. 2024)

• Each outlined function is mapped to a core, which can be shared through context switching

• Hide external memory access latency

SPARTA synthesis flow

POLITECNICO DI MI LANO De partment o f Electron ics, In formation an d Bio eng ine erin g 36

G. Gozzi et al., SPARTA: High-Level Synthesis of Parallel Multi-Threaded Accelerators. In: ACM Trans. Reconfigurable Technol. Syst. 18.1 (Dec. 2024)

• Integration to the standard synthesis flow of Bambu (*) exploiting the LLVM OpenMP runtime

HLS front-end

OpenMP pragmas pre-

processing

standard Bambu flow

SPARTA contributions

.c/.cpp/.ll

directives pre-processing

calls to OpenMP runtime

IR generation

SPARTA

OpenMP library

HLS back-end

thread ID propagation

OpenMP functions versioning

static pointer analysis

dead code elimination

pointer promotion

alias analysis

allocation, scheduling, binding,

RTL generation
.v/.vhd

(*) available
upon request

SPARTA architecture

POLITECNICO DI MI LANO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 37

G. Gozzi et al., SPARTA: High-Level Synthesis of Parallel Multi-Threaded Accelerators. In: ACM Trans. Reconfigurable Technol. Syst. 18.1 (Dec. 2024)

• Multiple parallel cores
• Hardware for arbitration and synchronization
• Efficient implementation of reductions
• Configurable number of channels towards

external memory and custom NoC
• Works very well for irregular applications

Parallel region (N Channels)

External memory

P
a

ra
lle

l re
g

io
n

Thread synchronization

SPARTA accelerator Sequential computation

Core N

Local

memory

NoC

CS

manager

Core 0

Local

memory

Core 1

Local

memory

CS

manager
Shared memory

Arbiter

CS

manager

Thank you for the attention!

38

39
POLITECNICO DI MI LANO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring

serena.curzel@polimi.it
https://panda.deib.polimi.it/

mailto:serena.curzel@polimi.it
https://panda.deib.polimi.it/

More details

40

Bambu features

De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 41

Frontend passes:
• Source code optimizations

• Alias analysis, dead-code elimination, hoisting, loop optimizations, etc...

POLITECNICO DI MI LANO

Interface generation - FIFO

POLITECNICO DI MI LANO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 42

C++ FIFO interface support:
• ac_ channel<T>
• hls::stream<T>

Example of c++ code with ac_ channels

void sum3numbers(ac_channel<ap_uint<64>>& a,
ac_channel<ap_uint<64>>& b,
ac_channel<ap_uint<64>>& c,
ac_channel<ap_uint<64>>& d)

{
int i;
for(i = 0; i < 8; ++i)

d.write(a.read() + b.read() + c.read());
}

Dataflow

POLITECNI CO DI MILA NO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring 43

Source code in C++ with pragma dataflow

Comparison of the resulting task graph with and without dataflow

class SimpleSystem {
AddBlock<5> A;
MulBlock B;
SubSystem C;
ac_ channel<int> x, y;

public:
void top(ac_ channel<int>& in1, ac_ channel<int>& in2,

ac_ channel<int>& in3,
ac_ channel<int>& out) {

#pragma HLS dataflow
A.compute(in1, x);
B.compute(x, in2, y);
C.compute(y, in3, out);

}
};

void dataflow_ top(ac_ channel<int>& in1, ac_ channel<int>& in2,
ac_ channel<int>& in3,

ac_ channel<int>& out) {
static SimpleSystem sys;
sys.top(in1, in2, in3, out);

}

Dataflow

POLITECNICO DI MI LANO De partment o f Electron ics, In formation an d Bio eng ine erin g 44

Dataflow support
• ac_ channel & hls_ stream
• FIFO depth could be controlled by pragmas
• Struct passed as template parameter supported
• Data field member support could be improved
• ac_ int and ac_ fixed supported

• Synthesis efficiency improved when PandA-Bambu is used with
Clang16

TrueFloat vs state of the art

45

Adder Multiplier

h
tt
ps
:/
/d
oi
.o
rg
/1
0
.1
0
0
7
/9
78
-3
-0
31
-4
6
0
77
-7
_
35

POLITECNI CO DI MILA NO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring

https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35

Impact of TrueFloat specialization strings

46

h
tt
ps
:/
/d
oi
.o
rg
/1
0
.1
0
0
7
/9
78
-3
-0
31
-4
6
0
77
-7
_
35

IEEE FP64

POLITECNICO DI MI LANO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring

https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35

SPARTA results

47POLITECNICO DI MI LANO De partmen t of Ele ctro nics, Info rmatio n and Bioe ngin ee ring

Speed up of SPARTA accelerators over the sequential baseline
for the Connected Components benchmark with different cores
and contexts

SPARTA results

48POLITECNICO DI MI LANO De partment o f Electron ics, In formation an d Bio eng ine erin g

Speed up of SPARTA accelerators over the sequential baseline
for the Triangle Count benchmark with different cores and
contexts

	Slide 1
	Slide 2: Outline
	Slide 3
	Slide 4: Bambu HLS
	Slide 5: Bambu: a modern open-source HLS tool
	Slide 6: Bambu: a modern HLS tool
	Slide 7: Bambu: a modern HLS tool
	Slide 8: Bambu: a modern HLS tool
	Slide 9: Bambu quality of results: CHStone
	Slide 10: Bambu quality of results: CHStone
	Slide 11: Bambu quality of results
	Slide 12: Verification
	Slide 13: Accelerator – host co-simulation
	Slide 14: Custom data formats: TrueFloat
	Slide 15: Custom floating-point formats
	Slide 16: Custom floating-point formats
	Slide 17: TrueFloat
	Slide 18: TrueFloat
	Slide 19: TrueFloat
	Slide 20: TrueFloat
	Slide 21: Interfaces and Caches
	Slide 22: Interface generation
	Slide 23: Interface generation – Axi4/AxiS
	Slide 24: Interface generation - Caches
	Slide 25: Compiler-driven innovation: Bambu + MLIR
	Slide 26: Compiler-driven innovation: MLIR
	Slide 27: The SODA Synthesizer
	Slide 28: The SODA Synthesizer
	Slide 29: CNN acceleration on FPGA
	Slide 30: Bambu + MLIR: high-level loop pipelining
	Slide 31: Bambu + MLIR: high-level loop pipelining
	Slide 32: Bambu + MLIR: high-level loop pipelining
	Slide 33: Multi-threaded accelerators: SPARTA
	Slide 34: Synthesis of PARallel multi-Threaded Accelerators (SPARTA)
	Slide 35: SPARTA synthesis flow
	Slide 36: SPARTA synthesis flow
	Slide 37: SPARTA architecture
	Slide 38: Thank you for the attention!
	Slide 39
	Slide 40: More details
	Slide 41: Bambu features
	Slide 42: Interface generation - FIFO
	Slide 43: Dataflow
	Slide 44: Dataflow
	Slide 45: TrueFloat vs state of the art
	Slide 46: Impact of TrueFloat specialization strings
	Slide 47: SPARTA results
	Slide 48: SPARTA results

