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Bambu: a modern open-source HLS tool

High-Level Synthesis:
« High-level behavioral design through sw programming

languages G+, Jova, et )
- Automated translation to Register-Transfer Level [ High-level Synthesis |
» Like compilers, but for hardware [ Synthesizable HDL |
*
| RT Synthesis |
— Increased performance of FPGA/ASIC made Netlist [ Technology Mapping |
available to software developers without hardware [ . l l
design expertise EEpEITE e
Bitfile [ Routing |
aannonn
g [T e b
AsSIC : ¢ ] :
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Bambu: a modern HLS tool

Bambu HLS

« Developed and maintained by the PandA group at
Politecnico di Milano since 15+ years

« Open-source

Synthesis flow:

« Compilation and optimization of the
intermediate representations (IR)

+ Allocation of resources

« Scheduling of operations

« Binding operations to resources
« Generation of synthesizable RTL

F.Ferrandiet al., Invited: Bambu: an Open-Source Research Framework for the High-Level
Synthesis of Complex Applications, 58th ACM/IEEE Design Automation Conference (DAC),
2021.
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Bambu: a modern HLS tool

Inputs:
« C/C++/LLVMIR
* Frontend compilation through GCC or Clang
- Complete support for ANSI C (except for recursion)
+ Pointers, user-defined data types, etc..
« Support for STL-like C++ structures
« Support for fixed-point HLS types

« Command-line optimization directives and constraints,
pragmas

« Library of functional units characterized for each target

« Performance estimation essential for scheduling and
optimization

NNNNNNNNNN
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Bambu: a modern HLS tool

Outputs:
« Synthesizable Verilog or VHDL
« Target-specific
« FPGA targets from AMD/Xilinx, Intel/Altera,
Lattice, NanoXplore

« ASIC targets through OpenROAD (Nangate 45,

ASAP7)

- Automatically generated testbench
* RTLsimulation with Verilator/Modelsim/XSIM

« Scripts for logic synthesis/implementation
 Vivado/Quartus/Diamond...
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Bambu quality of results: CHStone

Speedup and area consumption over commercial HLS tool across different Bambu configurations.

Latency is measured in ns (clock cycles * achieved period post-implementation). > 1is better.
Area is measured in Equivalent LUTs (BRAMs * 40 + DRAMS * 40 + DSPs * 40 + Registers * 0.5 + LUTs). < 1is better.
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Bambu quality of results: CHStone

Pareto plots (Latency vs. Area) for selected benchmarks. Points marked with x are dominated.
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Bambu quality of results

Other benchmarks + raw data at: https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results

‘s Bambu HLS Quality of Results

This page reports results obtained with Bambu HLS on widely used benchmark suites. For each benchmark suite, you will
find:

e Summary plots: overall performance against other tools (when available).
e Trade-off analysis: Pareto plots for latency vs. area.

e Detailed results: tables with full post-implementation metrics for each accelerator benchmark.

Notes:

e Results obtained with an internal development version of Bambu (July 2025).

Benchmark Suites

e CHStone
¢ MachSuite

* PolyBench



https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results
https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results
https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results
https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results
https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results
https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results
https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results
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Accelerator - host co-simulation

« HW/SW co-simulation framework

« RTLtestbenchandinfrastructure
automatically generated by Bambu

« Reports number of clock cycles with the given
input data

« Compares HW results with SW, or defers
verification to the testbench code

M. Fiorito et al., Augmented Co-Simulation for Fast Functional and System-Level Verification
of HLS Accelerators, 44th [EEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2025.

Zaﬁ"f)dﬁ |

{

my application() Q

/* sw code */

/* sw_code */

e, B
=
Nf"ﬂ a""ilf }
[ a—

Bambu HLS

RTL Simulator Process

Host System Process

Top-Level
Function Module

Testbench Testbench
Memory 11O
Module Module

A_L
d DPI-C IPC Interface !

Main Thread

Top-Level Function Wrapper
IPC Driver Thread

Functional d
verification interface

Memory-mapped file
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Custom data formats: TrueFloat
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Custom floating-point formats

Any number of exponent bits Any number of mantissa bits

sign exponent (8 bits) fraction (23 bits)
I

| |
‘0‘0111110001000OOOOOOOOOOOOOOOOOO

But also:
« Custom exponent bias * Hidden one, or not
* Rounding to nearest even or truncation « Subnormals, or not

 |EEE exceptions, saturation, or overflow « Dynamic or static sign
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Custom floating-point formats

Opportunities Challenges
» Fewer bits } Improved Quality « Assessing impact on accuracy
. Tailored format | ©f Results (QoR) « Design methodology (libraries? HLS?)
J « Wide design space to explore

« Faster functional units
« Smaller logic

« More acceleratorsin parallel
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TrueFloat
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HLS flow :
c/ Anal yses and Anal es oand |
C++/ 'transporma‘t ons FPBlender ‘tromsfo(‘mo\tions VHDL/
LLVM 7 Veﬁlog

1
anthmetic
lib
[ ~u e_l:loa’t il

« Users specify the required format, Bambu generates optimized arithmetic units
* Integrated within the HLS flow -> QoR higher than inserting «black box» IPs
« Effortless translation between encodings through command-line options

M. Fiorito et al., TrueFloat: A Templatized Arithmetic Library for HLS Floating-Point Operators. In Embedded Computer Systems: Architectures, Modeling, and

Simulation. SAMOS 2023.
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TrueFloat

float myAdd(float a, float b)

{

return a + b;

|

—fp-format=myAdd*e6m12b-63noh

|

float myAdd(float a, float b)

{
unsigned long long _a = __float_to_e6ml12b_63noh (*((

unsigned int*)&a), spec);

}

unsigned long long _b = __float_to_e6ml12b_63noh (*((
unsigned int*)&b), spec);

unsigned long long _res = __adde6bml2b_63noh(_a, _b, spec);

unsigned int _out = __e8m23b_127nih_to_float(_res, spec);

return *((float*)&_out) ;

Zaﬁ"ﬂm 1

Input code contains standard floating-
point operations and types
Per-function specialization string
Bambu handles type replacement,
conversions, arithmetic units
generation

M. Fiorito et al., TrueFloat: A Templatized Arithmetic Library for HLS Floating-Point Operators. In Embedded Computer Systems: Architectures, Modeling, and

Simulation. SAMOS 2023.

8



POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering

Zaﬁ"ﬂm |

TrueFloat

FPBlender:
« Compiler pass handling FP operations in Bambu wReigned tong lons --Tloat-addetmizb-6Inon(
« Uses results from previous analysis passes ine32expobiasy bitsd mady bited exc,
+ Informs subsequent transformations ©
ifGEHd == RNB_NEUEN)
_{_
. LSB_bit. = (RS%go >> 3) & 1;
TrueFloat library: oenike - i 2 B 1
- Templatized soft-float implementations in C using Tound = Gunrd.bie b (LSB.bie | Round_bit | Sticky_bit);
}
basic integer operations i ena
. . . Rrounded = RExpORSigl + round;
 Input operands and specialization arguments else

* Inter-procedural analysis and constant

propagation optimize the code

M. Fiorito et al., TrueFloat: A Templatized Arithmetic Library for HLS Floating-Point Operators. In Embedded Computer Systems: Architectures, Modeling, and
Simulation. SAMOS 2023.
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TrueFloat 2ani)

Testing TrueFloat configurations is particularly easy through the Bambu cosimulation framework
« Example: main program which runs the simulation and plots the outputs

« Use the same main program, plot outputs from the simulated accelerator
« Assesserrorsvisually

S. Curzel and M. Gribaudo. Custom Floating-Point Computations for the Optimization of ODE Solvers on FPGA. In: Workshop on Parallel Programming and
Run-Time Management Techniques for Many-Core Architectures and Workshop on Design Tools and Architectures for Multicore Embedded Computing
Platforms (PARMA-DITAM). 2025



Interfaces and Caches
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Interface generation

Supported protocols:
« Minimal Memory Interface (simple Bambu bus)
« FIFO, AxiStream |
- Handshake ~ (Mostly) compatible with Vitis
« Array HLS interfaces

o AXl4-Master ]

Requested by the user through --generate-interface=INFER and either
* Anarchitecture.xml file
 Interface pragmasinthe code

#pragma HLS bus mode = m axi
#fpragma HLS interface port = edges mode = bus
fpragma HLS interface port = level mode = bus

void bfs(edge t* edges, level t* level, ...)
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Interface generation - Axi4/AXiS

Support to Axi4 master and AxiS interfaces
- Easier integration with ARM processor (e.g., on the NG-ULTRA board)
« Automatic generation of AXl testbench supported
+ Memory latency can be configured

Read address channel

Department of Electronics, Information and Bioengineering

Address
and control
—
Master
interface

Read data channel

Read Read Read Read
data data data data

— — — —

Channel architecture for read transaction with Axi4
(AMBA® AXI™ and ACE™ Protocol Specification)

Slave
interface

Master
interface

Wirite address channel

Zaﬁ";}j

Address
and control
—
Wite data channel
Write Write Wirite Wirite
data data data data

— ——> ——> —»

Write response channel

Write
response

-+

Slave
interface

Channel architecture for write transaction with Axi4
(AMBA® AXI™ and ACE™ Protocol Specification)




POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering

Zaﬁ"f)dﬁ 24

Interface generation - Caches

Support for caches on AXl4
interfaces:
« Customizable cache Accelerator
parameters: line size, cache l v l
Size, rep|acement/write Memory controller Memory controller Memory controller
policy... ) )
« May improve performance Cache Cache
when data accesses are
contiguous and predictable
To A)z bus To A% bus To A)E bus

Schematic of an accelerator with three memory channels
(two with caches, one cacheless)
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Compiler-driven innovation: Bambu + MLIR
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Compiler-driven innovation: MLIR

« Multi-Level Intermediate

Representation (MLIR), infrastructure

for domain-specific compilers

Used predominantly for Al

« MLIR-> LLVMdialect-> LLVM IR ->»
Bambu

Any design written in MLIR can be
synthesized!

s ®
O theano

I3 -l-"'
TensorFlow Q Caffe 2

lowering

exploration

2

lowering

o
s

Bambu

—>

accelerator
design
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The SODA Synthesizer Northwest Da

NATIONAL LABORATORY

High-Level

|
i Framework DTL ML Mmdel| "Ir,’f"
|
| Y .
| VRES D ELR T « Modular, multi-level, open-source hardware
““““““““““ i‘""“"“““‘““ compiler from high-level programming
e .
: Synthesizer oo I frameWOFI(S tO SIllCOn
| rontend: .
i i S0DA 0PT — - Compiler-based frontend based on MLIR (SODA-
i Design Space | | 1 f OPT)
Exploration " - .
| i | [fesoues oran - Compiler-based HLS backend (Bambu)
A N 1 B | S R S T - Generates synthesizable Verilog for a variety of
] i O | e | v, FPGA and ASIC targets
| Ve [ Nk « Optimizations at all levels are performed as
_____________________________ v compiler passes
r——— T ———————— ————— | Executablea_a p p
|
: FPGA or ASIC Targets i L2
I Chip D esigh | Processor

S. Curzel et al., End-to-End Synthesis of Dynamically Controlled Machine Learning Accelerators, in [EEE Transactions on Computers, vol. 71, no. 12, pp.
3074-3087, 1 Dec. 2022, doi: 10.1109/TC.2022.3211430
N. B. Agostini et al., Bridging Python to Silicon: The SODA Toolchain, in [EEE Micro, vol. 42, no. 5, pp. 78-88, 1Sept.-Oct. 2022, doi: 10.1109/MM.2022.3178580
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SODA Bambu script:
bambu -v3 --print-dot \ ASIC OpenRoad
-lm --soft-float \ target

——compiler=I386 CLANGl6 \
—-—-device=nangated45 \

--clock-period=5 \ Shortcut for many
—-—experimental-setup=BAMBU-BALANCED-MP \ other
—-channels-number=2 .\ optimizations

—-—-memory-allocation-policy=ALI_BRAM \
--disable-function-proxy \
—--generate-tb=main kernel testbench.c \ Memory-level
--simulate --simulator=VERILATOR \ parallelism
--verilator-parallel \

—-—top-fname=main kernel \

input.ll 2>&1 | tee bambu-log
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CNN acceleration on FPGA

_put 1| input: | [0, 25, 29) « Neural network trained and
nputLayer | output: | [(1, 28, 28)] ] ;

, quantized to 8-bit toreduce
reshape | input: | (1, 28, 28) NG-Ultra area and improve hardware
Reshape | output: | (1, 28, 28, 1)

LUTS 4627 performance
conv2d | input: | (1,28, 28, 1) Registers 5714 - TFLitetoMLIR export
Conv2D | output: | (1, 26, 26, 12) Frequency 45.7 MHz ° Bambu SyntheSiS

DSP 54

max_pooling2d | input: | (1, 26, 26, 12)
MaxPooling2D | output: | (1, 13, 13, 12) MEM 34

! cycles 169,649
flatten | input: | (1, 13, 13, 12) Iatency 37ms
Flatten | output: (1, 2028) ’
Synthesis result targeting an

NG-Ultra FPGA

dense | input: | (1, 2028)
Dense | output: (1, 10)

CNN trained on MNIST
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Bambu + MLIR: high-level loop pipelining Northwest Da

NATIONAL LABORATORY

HatSchet
Scheduler » Goal: provide a pre-optimized
IR to the HLS tool (with
e , pipelined loops)
extraction Loop schedule 1 « Bambu HLS
MR | - Cansynthesize LLVMIR
\ \ _ (natural target for MLIR)
> Code .| Transformed .| High-Level >
Loop transformations loop Synthesis Fet 1 « Doesnot Support |OOp
MLIR Bambu plpellnlng (*)

(*) now available
upon request

S. Curzel et al.,, Pre-Scheduling of Affine Loops for HLS Pipelining. In: Euro-Par 2024: Parallel Processing Workshops. 2025, pp. 431-442
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Bambu + MLIR: high-level loop pipelining Northwest

func @example(%arg0: memref<1000xi32>) {

Department of Electronics, Information and Bioengineering

affine.for %argl = 0 to 1000 {
%0 = affine.load %arg0[%arg1]
%1 = arith.muli %0, %0

}

return

}

1
2
3
4
5 affine.store %1, %arg0[%arg1]
6
7
8

#1111

# vertex;
affine.load_1;
arith.muli_2;
affine.store_3;

cycle;
0;
1;
2,

functional_unit
loadO
mulO
store0

-

NATIONAL LABORATORY

1 #map = affine_map<(d0) -> (dO - 2)>
2 func @example(%arg0: memref<1000xi32>,
%arg1: memref<1000xi32>) {
%c0 = arith.constant O : index
%0 = affine.load %arg0[%c0] : memref<1000xi32>
%c1 = arith.constant 1 : index
%1 = affine.load %arg0[%c1] : memref<1000xi32>
%2 = arith.muli %0, %0 : i32
%3:2 = affine.for %arg2 = 2 to 1000

O coNOYULT DA W

%6 = arith.muli %arg3, %arg3 :i32
%7 = affine.apply #map(%arg?2)

affine.yield %5, %6 : 132, i32
}
%4 = arith.muli %3#0, %3#0 : i32
%c998 = arith.constant 998 : index
%c999 = arith.constant 999 : index

return

NN = e ed d ed ed ed ] ed ed
— O WVWOoONOUVIDAWN—O

S.Curzel et al., Pre-Scheduling of Affine Loops for HLS Pipelining. In: Euro-Par 2024: Parallel Processing Workshops. 2025, pp. 431-442

affine.store %4, %arg1[%c999] : memref<1000xi32>

Da

iter_args(%arg3 = %1, %arg4 = %2) -> (i32, i32) {
%5 = affine.load %arg0[%arg2] : memref<1000xi32>

affine.store %arg4, %arg1[%7] : memref<1000xi32>

affine.store %3#1, %arg1[%c998] : memref<1000xi32>

(0

/)

31
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Bambu + MLIR: high-level loop pipelining Northwest

NATIONAL LABORATORY

# Forward results if needed
soda-opt input.mlir -pass-pipeline="func.func (forward-results)" -o=forwarded.mlir"

soda-opt forwarded.mlir -pass-pipeline="func.func(if-conversion)" -o=converted.mlir"

soda-opt converted.mlir -pass-pipeline="func.func(data-flow-graph)"

python3 S$ROOT/output/generate hatschet resources.py

hatschet dfg.graphml --scheduler=MOOVAC --resource=resources.xml --writeschedule=schedule.csv

soda-opt converted.mlir -pass-pipeline="func.func (loop-scheduling {schedule=schedule.csv})"
-o=scheduled.mlir

soda-opt scheduled.mlir -lower-affine

S. Curzel et al.,, Pre-Scheduling of Affine Loops for HLS Pipelining. In: Euro-Par 2024: Parallel Processing Workshops. 2025, pp. 431-442
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Multi-threaded accelerators: SPARTA
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Synthesis of PARallel multi-Threaded

Accelerators (SPARTA)

- Starts from high-level languages (C/C++)
annotated with OpenMP pragmas

» Parallel, for, sections
* Reduction, shared, private, firstprivate

» Critical, barrier
* Produces an accelerator with multiple cores that
can execute concurrently

SPARTA accelerator

Zaﬁ"ﬂm M

Sequential computation

Core 0

Core N

Local
memory

CS
manager

Local
memory

CS
manager

Core 1

Local
memory

CS
manager

Arbiter

Thread synchronization

Shared memory

REREEEE]

NoC

2222222

External memory

G.Gozzietal., SPARTA: High-Level Synthesis of Parallel Multi-Threaded Accelerators. In: ACM Trans. Reconfigurable Technol. Syst. 18.1 (Dec. 2024)

uoibal |9||eied
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SPARTA synthesis flow za"‘)dﬁ

void dot product(int A[M], int B[M], int res[M]){ define 132 @dot product (...) {
int sum = 0; e
#pragma omp parallel num_threads(M) for call void __ kmpc_push_num_threads (M)

for(i =0; i < M; i++){
nrod(A[1], B[i], res[i]);
} }
4 define void @ .omp_outlined.(...) {
%6 = call 132 _ kmp_bambu_tid_from_gtid(i32 %0)

call void _ kmpc_fork call(.omp_outlined., ...)

call void prod(...)
Core 0 call void _ kmp_bambu_barrier_reached(i32 %6)
call void __ kmp_bambu_wait_all_threads()
Local ‘ CS

memory || manager

« Each outlined function is mapped to a core, which can be shared through context switching
« Hide external memory access latency

G.Gozzietal., SPARTA: High-Level Synthesis of Parallel Multi-Threaded Accelerators. In: ACM Trans. Reconfigurable Technol. Syst. 18.1 (Dec. 2024)
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SPARTA synthesis flow

- Integration to the standard synthesis flow of Bambu (*) exploiting the LLVM OpenMP runtime

.cl.cpp/ll |—>» HLS front-end HLS back-end standard Bambu flow
SPARTA contributions

directives pre-processing thread ID propagation

OpenMP pragmas pre- OpenMP functions versioning

processing
dead code elimination
= IR generation g alias analysis
PARTA
& : —> calls to OpenMP runtime
OpenMP library _ _ o
allocation, scheduling, binding, o ﬁ
. »  .v/.vhd
static pointer analysis RTL generation

4

pointer promotion

(*) available
upon request

G.Gozzietal., SPARTA: High-Level Synthesis of Parallel Multi-Threaded Accelerators. In: ACM Trans. Reconfigurable Technol. Syst. 18.1 (Dec. 2024)
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SPARTA architecture

« Multiple parallel cores

« Hardware for arbitration and synchronization

« Efficientimplementation of reductions

« Configurable number of channels towards
external memory and custom NoC

« Works very well for irregular applications

SPARTA accelerator

Zaﬁ"ﬂm |

Sequential computation

Core 0

Core N

Local
memory

CS
manager

Local
memory

CS
manager

Core 1

Local
memory

CS
manager

Arbiter

Thread synchronization

Shared memory

REREEEE]

NoC

2222222

External memory

G.Gozzietal., SPARTA: High-Level Synthesis of Parallel Multi-Threaded Accelerators. In: ACM Trans. Reconfigurable Technol. Syst. 18.1 (Dec. 2024)

uoibal |9||eied




Thank you for the attention!
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https://github.com/ferrandi/PandA-bambu

rena.curzel limi.it
h -//[panda.deib.polimi.it/


mailto:serena.curzel@polimi.it
https://panda.deib.polimi.it/

More details
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Bambu features

Frontend passes:
« Source code optimizations
 Alias analysis, dead-code elimination, hoisting, loop optimizations, etc...
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Interface generation - FIFO

C++ FIFO interface support:
* ac_channel<«T>

 hls::stream<T>

void

Ro 20 R0 oo

int

Example of c++ code with ac_ channels
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Dataflow

Department of Electronics, Information and Bioengineering

class SimpleSystem {

AddBlock<5> A;
MulBlock B;
SubSystem C;

ac_ channel<int> X, y;

public:
void top (ac_ channel<int>&in1, ac_ channel<int>&in2,
ac_ channel<int>&in3,
ac_ channel<int>&out) {
#pragma HLS dataflow
A.compute(inl, x);
B.compute(x, in2,y);
C.compute(y, in3, out);

I

ac_ channel<int>&in3,
ac_ channel<int>&out) {
static SimpleSystem sys;
sys.top(in1,in2, in3, out);

void dataflow_ top(ac_ channel<int>&in1, ac_ channel<int>&in2,

Source code in C++ with pragma dataflow

Comparison of the resulting task graph with and without dataflow

43
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Dataflow

Dataflow support

« ac_ channel & hils_ stream

FIFO depth could be controlled by pragmas
Struct passed as template parameter supported
Data field member support could be improved

ac_ intand ac_ fixed supported

« Synthesis efficiency improved when PandA-Bambu is used with
Clang16
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TrueFloat vs state of the art
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Impact of TrueFloat specialization strings
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SPARTA results

40
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Speed up of SPARTA accelerators over the sequential baseline
for the Connected Components benchmark with different cores
and contexts
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SPARTA results
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Speed up of SPARTA accelerators over the sequential baseline
for the Triangle Count benchmark with different cores and
contexts
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