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https://github.com/ferrandi/PandA-
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Bambu: a modern open-source HLS tool
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High-Level Synthesis:
• High-level behavioral design through sw programming 

languages
• Automated translation to Register-Transfer Level
• Like compilers, but for hardware

→ Increased performance of FPGA/ASIC made 
available to software developers without hardware 
design expertise



Bambu: a modern HLS tool
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Bambu HLS
• Developed and maintained by the PandA group at

Politecnico di Milano since 15+ years
• Open-source

Synthesis flow:
• Compilation and optimization of the 

intermediate representations (IR)
• Allocation of resources
• Scheduling of operations
• Binding operations to resources
• Generation of synthesizable RTL

F. Ferrandi et al., Invited: Bambu: an Open-Source Research Framework for the High-Level 
Synthesis of Complex Applications, 58th ACM/IEEE Design Automation Conference (DAC), 
2021.



Bambu: a modern HLS tool
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Inputs:
• C/C++/LLVM IR

• Frontend compilation through GCC or Clang
• Complete support for ANSI C (except for recursion)

• Pointers, user-defined data types, etc..
• Support for STL-like C++ structures
• Support for fixed-point HLS types

• Command-line optimization directives and constraints, 
pragmas

• Library of functional units characterized for each target
• Performance estimation essential for scheduling and 

optimization



Bambu: a modern HLS tool
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Outputs:
• Synthesizable Verilog or VHDL

• Target-specific
• FPGA targets from AMD/Xilinx, Intel/Altera, 

Lattice, NanoXplore
• ASIC targets through OpenROAD (Nangate 45, 

ASAP7)

• Automatically generated testbench
• RTL simulation with Verilator/Modelsim/XSIM

• Scripts for logic synthesis/implementation 
• Vivado/Quartus/Diamond…



Bambu quality of results: CHStone
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Speedup and area consumption over commercial HLS tool across different Bambu configurations.
Latency is measured in ns (clock cycles * achieved period post-implementation). > 1 is better.
Area is measured in Equivalent LUTs (BRAMs * 40 + DRAMs * 40 + DSPs * 40 + Registers * 0.5 + LUTs). < 1 is better.



Bambu quality of results: CHStone
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Pareto plots (Latency vs. Area) for selected benchmarks. Points marked with x are dominated.



Bambu quality of results
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Other benchmarks + raw data at: https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results

https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results
https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results
https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results
https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results
https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results
https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results
https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results
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Accelerator – host co-simulation
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• HW/SW co-simulation framework
• RTL testbench and infrastructure

automatically generated by Bambu
• Reports number of clock cycles with the given

input data
• Compares HW results with SW, or defers

verification to the testbench code

M. Fiorito et al., Augmented Co-Simulation for Fast Functional and System-Level Verification
of HLS Accelerators, 44th IEEE/ACM International Conference on Computer-Aided Design 
(ICCAD), 2025.
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Custom floating-point formats
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Any number of exponent bits Any number of mantissa bits

But also:

• Custom exponent bias

• Rounding to nearest even or truncation

• IEEE exceptions, saturation, or overflow

• Hidden one, or not

• Subnormals, or not

• Dynamic or static sign



Custom floating-point formats
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• Fewer bits

• Tailored format

• Assessing impact on accuracy

• Design methodology (libraries? HLS?)

• Wide design space to explore

Opportunities Challenges

Improved Quality 
of Results (QoR)

• Faster functional units

• Smaller logic

• More accelerators in parallel



TrueFloat
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• Users specify the required format, Bambu generates optimized arithmetic units
• Integrated within the HLS flow -> QoR higher than inserting «black box» IPs
• Effortless translation between encodings through command-line options

M. Fiorito et al., TrueFloat: A Templatized Arithmetic Library for HLS Floating-Point Operators. In Embedded Computer Systems: Architectures, Modeling, and 
Simulation. SAMOS 2023.



TrueFloat
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M. Fiorito et al., TrueFloat: A Templatized Arithmetic Library for HLS Floating-Point Operators. In Embedded Computer Systems: Architectures, Modeling, and 
Simulation. SAMOS 2023.

• Input code contains standard floating-
point operations and types

• Per-function specialization string
• Bambu handles type replacement, 

conversions, arithmetic units
generation



TrueFloat
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M. Fiorito et al., TrueFloat: A Templatized Arithmetic Library for HLS Floating-Point Operators. In Embedded Computer Systems: Architectures, Modeling, and 
Simulation. SAMOS 2023.

FPBlender:
• Compiler pass handling FP operations in Bambu
• Uses results from previous analysis passes
• Informs subsequent transformations

TrueFloat library:
• Templatized soft-float implementations in C using

basic integer operations
• Input operands and specialization arguments
• Inter-procedural analysis and constant

propagation optimize the code



TrueFloat
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Testing TrueFloat configurations is particularly easy through the Bambu cosimulation framework
• Example: main program which runs the simulation and plots the outputs

• Use the same main program, plot outputs from the simulated accelerator
• Assess errors visually

S. Curzel and M. Gribaudo. Custom Floating-Point Computations for the Optimization of ODE Solvers on FPGA. In: Workshop on Parallel Programming and 
Run-Time Management Techniques for Many-Core Architectures and Workshop on Design Tools and Architectures for Multicore Embedded Computing 
Platforms (PARMA-DITAM). 2025
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Interface generation
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Supported protocols:
• Minimal Memory Interface (simple Bambu bus)
• FIFO, AxiStream
• Handshake
• Array
• AXI4-Master

(Mostly) compatible with Vitis 
HLS interfaces

Requested by the user through --generate-interface=INFER and either
• An architecture.xml file
• Interface pragmas in the code <?xml version="1.0"?>

<module>

<function name=»bfs" symbol=»bfs">

<bundles>

<bundle alignment="1" bank_number="0" mode="m_axi" name="bus"></bundle>

<bundle mode="bus" name="edges"></bundle>

<bundle mode="bus" name="level"></bundle>

...

#pragma HLS bus mode = m_axi
#pragma HLS interface port = edges mode = bus
#pragma HLS interface port = level mode = bus
void bfs(edge_t* edges, level_t* level, ...)



Interface generation – Axi4/AxiS
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Support to Axi4 master and AxiS interfaces
• Easier integration with ARM processor (e.g., on the NG-ULTRA board)
• Automatic generation of AXI testbench supported
• Memory latency can be configured

Channel architecture for read transaction with Axi4 
(AMBA®AXI and ACE Protocol Specification)

Channel architecture for write transaction with Axi4 
(AMBA®AXI and ACE Protocol Specification)



Interface generation - Caches
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Support for caches on AXI4 
interfaces:

• Customizable cache 
parameters: line size, cache 
size, replacement/write 
policy...

• May improve performance 
when data accesses are 
contiguous and predictable



Compiler-driven innovation: Bambu + MLIR
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Compiler-driven innovation: MLIR
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• Multi-Level Intermediate 
Representation (MLIR), infrastructure
for domain-specific compilers
• Used predominantly for AI

• MLIR -> LLVM dialect -> LLVM IR -> 
Bambu
• Any design written in MLIR can be 

synthesized!



The SODA Synthesizer
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S. Curzel et al., End-to-End Synthesis of Dynamically Controlled Machine Learning Accelerators, in IEEE Transactions on Computers, vol. 71, no. 12, pp. 
3074-3087, 1 Dec. 2022, doi: 10.1109/TC.2022.3211430
N. B. Agostini et al., Bridging Python to Silicon: The SODA Toolchain, in IEEE Micro, vol. 42, no. 5, pp. 78-88, 1 Sept.-Oct. 2022, doi: 10.1109/MM.2022.3178580

• Modular, multi-level, open-source hardware 
compiler from high-level programming 
frameworks to silicon

• Compiler-based frontend based on MLIR (SODA-
OPT)

• Compiler-based HLS backend (Bambu)
• Generates synthesizable Verilog for a variety of 

FPGA and ASIC targets
• Optimizations at all levels are performed as

compiler passes



The SODA Synthesizer
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SODA Bambu script:

bambu -v3 --print-dot \

-lm --soft-float \

--compiler=I386_CLANG16  \

--device=nangate45 \

--clock-period=5 \

--experimental-setup=BAMBU-BALANCED-MP \

--channels-number=2  \

--memory-allocation-policy=ALL_BRAM \

--disable-function-proxy \

--generate-tb=main_kernel_testbench.c \

--simulate --simulator=VERILATOR \

--verilator-parallel \

--top-fname=main_kernel \

input.ll 2>&1 | tee bambu-log

ASIC OpenRoad
target

Shortcut for many
other
optimizations

Memory-level
parallelism



CNN acceleration on FPGA
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NG-Ultra

LUTS 4627

Registers 5714

Frequency 45.7 MHz

DSP 54

MEM 34

cycles 169,649

latency 3.7ms

• Neural network trained and 
quantized to 8-bit to reduce 
area and improve hardware 
performance

• TFLite to MLIR export
• Bambu synthesis

CNN trained on MNIST

Synthesis result targeting an 
NG-Ultra FPGA



Bambu + MLIR: high-level loop pipelining
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• Goal: provide a pre-optimized 
IR to the HLS tool (with 
pipelined loops)

• Bambu HLS
• Can synthesize LLVM IR 

(natural target for MLIR)
• Does not support loop 

pipelining (*)

(*) now available
upon request

S. Curzel et al., Pre-Scheduling of Affine Loops for HLS Pipelining. In: Euro-Par 2024: Parallel Processing Workshops. 2025, pp. 431–442



Bambu + MLIR: high-level loop pipelining
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S. Curzel et al., Pre-Scheduling of Affine Loops for HLS Pipelining. In: Euro-Par 2024: Parallel Processing Workshops. 2025, pp. 431–442



Bambu + MLIR: high-level loop pipelining
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S. Curzel et al., Pre-Scheduling of Affine Loops for HLS Pipelining. In: Euro-Par 2024: Parallel Processing Workshops. 2025, pp. 431–442

# Forward results if needed

soda-opt input.mlir -pass-pipeline="func.func(forward-results)" -o=forwarded.mlir"

# Apply if conversion where possible

soda-opt forwarded.mlir -pass-pipeline="func.func(if-conversion)" -o=converted.mlir"

# Extract data flow graph from the mlir code.

soda-opt converted.mlir -pass-pipeline="func.func(data-flow-graph)"

# Generate default resources.xml file

python3 $ROOT/output/generate_hatschet_resources.py

# Obtain a schedule for the given data flow graph, scheduler, and resource file.

hatschet dfg.graphml --scheduler=MOOVAC --resource=resources.xml --writeschedule=schedule.csv

# Rebuild mlir following the scheduled received from HatSchet.

soda-opt converted.mlir -pass-pipeline="func.func(loop-scheduling {schedule=schedule.csv})" 

-o=scheduled.mlir

# Lower, translate to LLVM IR, synthesize with Bambu.

soda-opt scheduled.mlir -lower-affine ...



Multi-threaded accelerators: SPARTA
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Synthesis of PARallel multi-Threaded
Accelerators (SPARTA)
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G. Gozzi et al., SPARTA: High-Level Synthesis of Parallel Multi-Threaded Accelerators. In: ACM Trans. Reconfigurable Technol. Syst. 18.1 (Dec. 2024)

• Starts from high-level languages (C/C++) 
annotated with OpenMP pragmas
• Parallel, for, sections
• Reduction, shared, private, firstprivate
• Critical, barrier

• Produces an accelerator with multiple cores that
can execute concurrently
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SPARTA synthesis flow
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G. Gozzi et al., SPARTA: High-Level Synthesis of Parallel Multi-Threaded Accelerators. In: ACM Trans. Reconfigurable Technol. Syst. 18.1 (Dec. 2024)

• Each outlined function is mapped to a core, which can be shared through context switching

• Hide external memory access latency



SPARTA synthesis flow
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G. Gozzi et al., SPARTA: High-Level Synthesis of Parallel Multi-Threaded Accelerators. In: ACM Trans. Reconfigurable Technol. Syst. 18.1 (Dec. 2024)

• Integration to the standard synthesis flow of Bambu (*) exploiting the LLVM OpenMP runtime

HLS front-end

OpenMP pragmas pre-

processing

standard Bambu flow

SPARTA contributions

.c/.cpp/.ll

directives pre-processing

calls to OpenMP runtime

IR generation

SPARTA

OpenMP library

HLS back-end

thread ID propagation

OpenMP functions versioning

static pointer analysis

dead code elimination

pointer promotion

alias analysis

allocation, scheduling, binding,

RTL generation
.v/.vhd

(*) available
upon request



SPARTA architecture
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G. Gozzi et al., SPARTA: High-Level Synthesis of Parallel Multi-Threaded Accelerators. In: ACM Trans. Reconfigurable Technol. Syst. 18.1 (Dec. 2024)

• Multiple parallel cores
• Hardware for arbitration and synchronization
• Efficient implementation of reductions
• Configurable number of channels towards

external memory and custom NoC
• Works very well for irregular applications
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Thank you for the attention!
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Bambu features
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Frontend passes:
• Source code optimizations

• Alias analysis, dead-code elimination, hoisting, loop optimizations, etc...

POLITECNICO DI  MI LANO



Interface generation - FIFO
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C++ FIFO interface support:
• ac_ channel<T> 
• hls::stream<T>

Example of c++ code with ac_ channels

void sum3numbers(ac_channel<ap_uint<64>>& a, 
ac_channel<ap_uint<64>>& b, 
ac_channel<ap_uint<64>>& c, 
ac_channel<ap_uint<64>>& d)

{
int i; 
for(i = 0; i < 8; ++i)

d.write(a.read() + b.read() + c.read());
}



Dataflow
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Source code in C++ with pragma dataflow

Comparison of the resulting task graph with and without dataflow

class SimpleSystem {
AddBlock<5> A;
MulBlock B;
SubSystem C;
ac_ channel<int> x, y;

public:
void top(ac_ channel<int>& in1, ac_ channel<int>& in2, 

ac_ channel<int>& in3, 
ac_ channel<int>& out) {

#pragma HLS dataflow
A.compute(in1, x);
B.compute(x, in2, y);
C.compute(y, in3, out);

}
};

void dataflow_ top(ac_ channel<int>& in1, ac_ channel<int>& in2,
ac_ channel<int>& in3,

ac_ channel<int>& out) {
static SimpleSystem sys;
sys.top(in1, in2, in3, out);

}



Dataflow
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Dataflow support
• ac_ channel & hls_ stream 
• FIFO depth could be controlled by pragmas
• Struct passed as template parameter supported
• Data field member support could be improved
• ac_ int and ac_ fixed supported

• Synthesis efficiency improved when PandA-Bambu is used with 
Clang16



TrueFloat vs state of the art
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Impact of TrueFloat specialization strings
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SPARTA results
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Speed up of SPARTA accelerators over the sequential baseline 
for the Connected Components benchmark with different cores 
and contexts 



SPARTA results
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Speed up of SPARTA accelerators over the sequential baseline 
for the Triangle Count benchmark with different cores and 
contexts 
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