2 o

88 POLITECNICO @
00 MILANO 1863 ..; }. za : ;

DEPARTMENT

OF ELECTRONICS
INFORMATION

AND BIOENGINEERING

P e e

PR el I

A o (e *

Bambu: Open-Source HLS for Automated
FPGA/ASIC Acceleration

CGO 2026 - SODA tutorial
31.01.2026 | Serena Curzel

POLITECNICO DI MILANO

Outline

Department of Electronics, Information and Bioengineering

Daﬁ'i')d/é |

Tutorial Colab
Notebook

https://github.com/ferrandi/PandA-
bambu/tree/dev/panda/documentation/bambul01

Bambu HLS

01

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering

Zaﬁ";}j/é |

Bambu: a modern open-source HLS tool

High-Level Synthesis:
« High-level behavioral design through sw programming

languages G+, Jova, et)
- Automated translation to Register-Transfer Level [High-level Synthesis |
» Like compilers, but for hardware [Synthesizable HDL |
*
| RT Synthesis |
— Increased performance of FPGA/ASIC made Netlist [Technology Mapping |
available to software developers without hardware [. l l
design expertise EEpEITE e
Bitfile [Routing |
aannonn
g [T e b
AsSIC : ¢] :

guauooyd

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering

Bambu: a modern HLS tool

Bambu HLS

« Developed and maintained by the PandA group at
Politecnico di Milano since 15+ years

« Open-source

Synthesis flow:

« Compilation and optimization of the
intermediate representations (IR)

+ Allocation of resources

« Scheduling of operations

« Binding operations to resources
« Generation of synthesizable RTL

F.Ferrandiet al., Invited: Bambu: an Open-Source Research Framework for the High-Level
Synthesis of Complex Applications, 58th ACM/IEEE Design Automation Conference (DAC),
2021.

et Range Vilow &
|||||
optieeiztons
\ Code Motiors / C
and Speculations SUnpiticaton:
css
| DC
\
Soratrants N l

I Rosource Memory Function
i asocation wocation Allocaion
|

Dobugang

Nothat generaton synthesa &

NxMap, Yos

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering

Bambu: a modern HLS tool

Inputs:
« C/C++/LLVMIR
* Frontend compilation through GCC or Clang
- Complete support for ANSI C (except for recursion)
+ Pointers, user-defined data types, etc..
« Support for STL-like C++ structures
« Support for fixed-point HLS types

« Command-line optimization directives and constraints,
pragmas

« Library of functional units characterized for each target

« Performance estimation essential for scheduling and
optimization

NNNNNNNNNN

o I

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering

Bambu: a modern HLS tool

Outputs:
« Synthesizable Verilog or VHDL
« Target-specific
« FPGA targets from AMD/Xilinx, Intel/Altera,
Lattice, NanoXplore

« ASIC targets through OpenROAD (Nangate 45,

ASAP7)

- Automatically generated testbench
* RTLsimulation with Verilator/Modelsim/XSIM

« Scripts for logic synthesis/implementation
 Vivado/Quartus/Diamond...

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering

Da E}M

Bambu quality of results: CHStone

Speedup and area consumption over commercial HLS tool across different Bambu configurations.

Latency is measured in ns (clock cycles * achieved period post-implementation). > 1is better.
Area is measured in Equivalent LUTs (BRAMs * 40 + DRAMS * 40 + DSPs * 40 + Registers * 0.5 + LUTs). < 1is better.

CHStone Benchmarks CHStone Benchmarks
4.0 -
B = —_
= 3.5 1 o o S 8-
wn — — (]
= S S "
5 0] % % T fE z
5 2.5 = - T 61 = e
g © © £ 8 2
§ 2.0- 5 5 £ k a
o = £ £ S T T
. S 4 = =
€15 g g O S s
o = L S S g 5 g
B B e © I_I] = E
] Y2 = e
o < — o (o]
TosE g & = :I:[E]': fffffffffffffffffffff =
— =
= .
0-0 T T T T T T T T T T T T 0_
E wn \..5 -O 2 E E E m ") N [T T T T T T T T ‘I_
S 2 ® E & g9 a £ P 2 E § 8 3 2 3 £ &t § 8 ¥ ©
g g 5 £ 8 = E g g g 8 s 3 2 & 5 T & % 8
© © o o y— [y o (o)) — e funl
© £ | © S o o 2 3
_g © e |
@ P
wn

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering

Zaﬁ"ﬂm |

Bambu quality of results: CHStone

Pareto plots (Latency vs. Area) for selected benchmarks. Points marked with x are dominated.

adpcm gsm
X 22 8 X ¥ bal
70000 - 000 bal-mp
perf
20000 A .
65000 A ® per-mp
18000 A
60000 -
B 2
— ~— 16000 A
9 9
S 55000 A <
z 3
s ® 14000 -
50000 -
12000 A
45000
10000 A
40000 - ° °
T T T T T T 8000 B T T T T T T T T
18000 20000 22000 24000 26000 28000 8500 9000 9500 1000010500110001150012000

Area (Equivalent LUTs) Area (Equivalent LUTs)

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering

Bambu quality of results

Other benchmarks + raw data at: https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results

‘s Bambu HLS Quality of Results

This page reports results obtained with Bambu HLS on widely used benchmark suites. For each benchmark suite, you will
find:

e Summary plots: overall performance against other tools (when available).
e Trade-off analysis: Pareto plots for latency vs. area.

e Detailed results: tables with full post-implementation metrics for each accelerator benchmark.

Notes:

e Results obtained with an internal development version of Bambu (July 2025).

Benchmark Suites

e CHStone
¢ MachSuite

* PolyBench

https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results
https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results
https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results
https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results
https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results
https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results
https://github.com/ferrandi/PandA-bambu/wiki/Quality-of-Results

02

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering

Accelerator - host co-simulation

« HW/SW co-simulation framework

« RTLtestbenchandinfrastructure
automatically generated by Bambu

« Reports number of clock cycles with the given
input data

« Compares HW results with SW, or defers
verification to the testbench code

M. Fiorito et al., Augmented Co-Simulation for Fast Functional and System-Level Verification
of HLS Accelerators, 44th [EEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2025.

Zaﬁ"f)dﬁ |

{

my application() Q

/* sw code */

/* sw_code */

e, B
=
Nf"ﬂ a""ilf }
[a—

Bambu HLS

RTL Simulator Process

Host System Process

Top-Level
Function Module

Testbench Testbench
Memory 11O
Module Module

A_L
d DPI-C IPC Interface !

Main Thread

Top-Level Function Wrapper
IPC Driver Thread

Functional d
verification interface

Memory-mapped file

Zaﬁ";}m |

Custom data formats: TrueFloat

03

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering 5

Zaﬁ"f)dﬁ W

Custom floating-point formats

Any number of exponent bits Any number of mantissa bits

sign exponent (8 bits) fraction (23 bits)
I

| |
‘0‘0111110001000OOOOOOOOOOOOOOOOOO

But also:
« Custom exponent bias * Hidden one, or not
* Rounding to nearest even or truncation « Subnormals, or not

 |EEE exceptions, saturation, or overflow « Dynamic or static sign

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering

Zaﬁ"ﬂm |

Custom floating-point formats

Opportunities Challenges
» Fewer bits } Improved Quality « Assessing impact on accuracy
. Tailored format | ©f Results (QoR) « Design methodology (libraries? HLS?)
J « Wide design space to explore

« Faster functional units
« Smaller logic

« More acceleratorsin parallel

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering

TrueFloat

Zaﬁ";}j

HLS flow :
c/ Anal yses and Anal es oand |
C++/ 'transporma‘t ons FPBlender ‘tromsfo(‘mo\tions VHDL/
LLVM 7 Veﬁlog

1
anthmetic
lib
[~u e_l:loa’t il

« Users specify the required format, Bambu generates optimized arithmetic units
* Integrated within the HLS flow -> QoR higher than inserting «black box» IPs
« Effortless translation between encodings through command-line options

M. Fiorito et al., TrueFloat: A Templatized Arithmetic Library for HLS Floating-Point Operators. In Embedded Computer Systems: Architectures, Modeling, and

Simulation. SAMOS 2023.

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering

TrueFloat

float myAdd(float a, float b)

{

return a + b;

|

—fp-format=myAdd*e6m12b-63noh

|

float myAdd(float a, float b)

{
unsigned long long _a = __float_to_e6ml12b_63noh (*((

unsigned int*)&a), spec);

}

unsigned long long _b = __float_to_e6ml12b_63noh (*((
unsigned int*)&b), spec);

unsigned long long _res = __adde6bml2b_63noh(_a, _b, spec);

unsigned int _out = __e8m23b_127nih_to_float(_res, spec);

return *((float*)&_out) ;

Zaﬁ"ﬂm 1

Input code contains standard floating-
point operations and types
Per-function specialization string
Bambu handles type replacement,
conversions, arithmetic units
generation

M. Fiorito et al., TrueFloat: A Templatized Arithmetic Library for HLS Floating-Point Operators. In Embedded Computer Systems: Architectures, Modeling, and

Simulation. SAMOS 2023.

8

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering

Zaﬁ"ﬂm |

TrueFloat

FPBlender:
« Compiler pass handling FP operations in Bambu wReigned tong lons --Tloat-addetmizb-6Inon(
« Uses results from previous analysis passes ine32expobiasy bitsd mady bited exc,
+ Informs subsequent transformations ©
ifGEHd == RNB_NEUEN)
{
. LSB_bit. = (RS%go >> 3) & 1;
TrueFloat library: oenike - i 2 B 1
- Templatized soft-float implementations in C using Tound = Gunrd.bie b (LSB.bie | Round_bit | Sticky_bit);
}
basic integer operations i ena
. . . Rrounded = RExpORSigl + round;
 Input operands and specialization arguments else

* Inter-procedural analysis and constant

propagation optimize the code

M. Fiorito et al., TrueFloat: A Templatized Arithmetic Library for HLS Floating-Point Operators. In Embedded Computer Systems: Architectures, Modeling, and
Simulation. SAMOS 2023.

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering 20

TrueFloat 2ani)

Testing TrueFloat configurations is particularly easy through the Bambu cosimulation framework
« Example: main program which runs the simulation and plots the outputs

« Use the same main program, plot outputs from the simulated accelerator
« Assesserrorsvisually

S. Curzel and M. Gribaudo. Custom Floating-Point Computations for the Optimization of ODE Solvers on FPGA. In: Workshop on Parallel Programming and
Run-Time Management Techniques for Many-Core Architectures and Workshop on Design Tools and Architectures for Multicore Embedded Computing
Platforms (PARMA-DITAM). 2025

Interfaces and Caches

04

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering

Zaﬁ";}j

Interface generation

Supported protocols:
« Minimal Memory Interface (simple Bambu bus)
« FIFO, AxiStream |
- Handshake ~ (Mostly) compatible with Vitis
« Array HLS interfaces

o AXl4-Master]

Requested by the user through --generate-interface=INFER and either
* Anarchitecture.xml file
 Interface pragmasinthe code

#pragma HLS bus mode = m axi
#fpragma HLS interface port = edges mode = bus
fpragma HLS interface port = level mode = bus

void bfs(edge t* edges, level t* level, ...)

POLITECNICO DI MILANO

Interface generation - Axi4/AXiS

Support to Axi4 master and AxiS interfaces
- Easier integration with ARM processor (e.g., on the NG-ULTRA board)
« Automatic generation of AXl testbench supported
+ Memory latency can be configured

Read address channel

Department of Electronics, Information and Bioengineering

Address
and control
—
Master
interface

Read data channel

Read Read Read Read
data data data data

— — — —

Channel architecture for read transaction with Axi4
(AMBA® AXI™ and ACE™ Protocol Specification)

Slave
interface

Master
interface

Wirite address channel

Zaﬁ";}j

Address
and control
—
Wite data channel
Write Write Wirite Wirite
data data data data

— ——> ——> —»

Write response channel

Write
response

-+

Slave
interface

Channel architecture for write transaction with Axi4
(AMBA® AXI™ and ACE™ Protocol Specification)

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering

Zaﬁ"f)dﬁ 24

Interface generation - Caches

Support for caches on AXl4
interfaces:
« Customizable cache Accelerator
parameters: line size, cache l v l
Size, rep|acement/write Memory controller Memory controller Memory controller
policy...))
« May improve performance Cache Cache
when data accesses are
contiguous and predictable
To A)z bus To A% bus To A)E bus

Schematic of an accelerator with three memory channels
(two with caches, one cacheless)

Zaﬁ";}m 25

Compiler-driven innovation: Bambu + MLIR

05

POLITECNICO DI MILANO

Department of Electronics, Information and Bioe

ngineering

Compiler-driven innovation: MLIR

« Multi-Level Intermediate

Representation (MLIR), infrastructure

for domain-specific compilers

Used predominantly for Al

« MLIR-> LLVMdialect-> LLVM IR ->»
Bambu

Any design written in MLIR can be
synthesized!

s ®
O theano

I3 -l-"'
TensorFlow Q Caffe 2

lowering

exploration

2

lowering

o
s

Bambu

—>

accelerator
design

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering
% ('.Q :

The SODA Synthesizer Northwest Da

NATIONAL LABORATORY

High-Level

|
i Framework DTL ML Mmdel| "Ir,’f"
|
| Y .
| VRES D ELR T « Modular, multi-level, open-source hardware
““““““““““ i‘""“"“““‘““ compiler from high-level programming
e .
: Synthesizer oo I frameWOFI(S tO SIllCOn
| rontend: .
i i S0DA 0PT — - Compiler-based frontend based on MLIR (SODA-
i Design Space | | 1 f OPT)
Exploration " - .
| i | [fesoues oran - Compiler-based HLS backend (Bambu)
A N 1 B | S R S T - Generates synthesizable Verilog for a variety of
] i O | e | v, FPGA and ASIC targets
| Ve [Nk « Optimizations at all levels are performed as
_____________________________ v compiler passes
r——— T ———————— ————— | Executablea_a p p
|
: FPGA or ASIC Targets i L2
I Chip D esigh | Processor

S. Curzel et al., End-to-End Synthesis of Dynamically Controlled Machine Learning Accelerators, in [EEE Transactions on Computers, vol. 71, no. 12, pp.
3074-3087, 1 Dec. 2022, doi: 10.1109/TC.2022.3211430
N. B. Agostini et al., Bridging Python to Silicon: The SODA Toolchain, in [EEE Micro, vol. 42, no. 5, pp. 78-88, 1Sept.-Oct. 2022, doi: 10.1109/MM.2022.3178580

28

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering >

es
The SODA Synthesizer Northwest Da A

NATIONAL LABORATORY

SODA Bambu script:
bambu -v3 --print-dot \ ASIC OpenRoad
-lm --soft-float \ target

——compiler=I386 CLANGl6 \
—-—-device=nangated45 \

--clock-period=5 \ Shortcut for many
—-—experimental-setup=BAMBU-BALANCED-MP \ other
—-channels-number=2 .\ optimizations

—-—-memory-allocation-policy=ALI_BRAM \
--disable-function-proxy \
—--generate-tb=main kernel testbench.c \ Memory-level
--simulate --simulator=VERILATOR \ parallelism
--verilator-parallel \

—-—top-fname=main kernel \

input.ll 2>&1 | tee bambu-log

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering

Da E}M

CNN acceleration on FPGA

_put 1| input: | [0, 25, 29) « Neural network trained and
nputLayer | output: | [(1, 28, 28)]] ;

, quantized to 8-bit toreduce
reshape | input: | (1, 28, 28) NG-Ultra area and improve hardware
Reshape | output: | (1, 28, 28, 1)

LUTS 4627 performance
conv2d | input: | (1,28, 28, 1) Registers 5714 - TFLitetoMLIR export
Conv2D | output: | (1, 26, 26, 12) Frequency 45.7 MHz ° Bambu SyntheSiS

DSP 54

max_pooling2d | input: | (1, 26, 26, 12)
MaxPooling2D | output: | (1, 13, 13, 12) MEM 34

! cycles 169,649
flatten | input: | (1, 13, 13, 12) Iatency 37ms
Flatten | output: (1, 2028) ’
Synthesis result targeting an

NG-Ultra FPGA

dense | input: | (1, 2028)
Dense | output: (1, 10)

CNN trained on MNIST

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering

~7 e /4

Bambu + MLIR: high-level loop pipelining Northwest Da

NATIONAL LABORATORY

HatSchet
Scheduler » Goal: provide a pre-optimized
IR to the HLS tool (with
e , pipelined loops)
extraction Loop schedule 1 « Bambu HLS
MR | - Cansynthesize LLVMIR
\ \ _ (natural target for MLIR)
> Code .| Transformed .| High-Level >
Loop transformations loop Synthesis Fet 1 « Doesnot Support |OOp
MLIR Bambu plpellnlng (*)

(*) now available
upon request

S. Curzel et al.,, Pre-Scheduling of Affine Loops for HLS Pipelining. In: Euro-Par 2024: Parallel Processing Workshops. 2025, pp. 431-442

POLITECNICO DI MILANO

Bambu + MLIR: high-level loop pipelining Northwest

func @example(%arg0: memref<1000xi32>) {

Department of Electronics, Information and Bioengineering

affine.for %argl = 0 to 1000 {
%0 = affine.load %arg0[%arg1]
%1 = arith.muli %0, %0

}

return

}

1
2
3
4
5 affine.store %1, %arg0[%arg1]
6
7
8

#1111

vertex;
affine.load_1;
arith.muli_2;
affine.store_3;

cycle;
0;
1;
2,

functional_unit
loadO
mulO
store0

-

NATIONAL LABORATORY

1 #map = affine_map<(d0) -> (dO - 2)>
2 func @example(%arg0: memref<1000xi32>,
%arg1: memref<1000xi32>) {
%c0 = arith.constant O : index
%0 = affine.load %arg0[%c0] : memref<1000xi32>
%c1 = arith.constant 1 : index
%1 = affine.load %arg0[%c1] : memref<1000xi32>
%2 = arith.muli %0, %0 : i32
%3:2 = affine.for %arg2 = 2 to 1000

O coNOYULT DA W

%6 = arith.muli %arg3, %arg3 :i32
%7 = affine.apply #map(%arg?2)

affine.yield %5, %6 : 132, i32
}
%4 = arith.muli %3#0, %3#0 : i32
%c998 = arith.constant 998 : index
%c999 = arith.constant 999 : index

return

NN = e ed d ed ed ed] ed ed
— O WVWOoONOUVIDAWN—O

S.Curzel et al., Pre-Scheduling of Affine Loops for HLS Pipelining. In: Euro-Par 2024: Parallel Processing Workshops. 2025, pp. 431-442

affine.store %4, %arg1[%c999] : memref<1000xi32>

Da

iter_args(%arg3 = %1, %arg4 = %2) -> (i32, i32) {
%5 = affine.load %arg0[%arg2] : memref<1000xi32>

affine.store %arg4, %arg1[%7] : memref<1000xi32>

affine.store %3#1, %arg1[%c998] : memref<1000xi32>

(0

/)

31

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering 32

Bambu + MLIR: high-level loop pipelining Northwest

NATIONAL LABORATORY

Forward results if needed
soda-opt input.mlir -pass-pipeline="func.func (forward-results)" -o=forwarded.mlir"

soda-opt forwarded.mlir -pass-pipeline="func.func(if-conversion)" -o=converted.mlir"

soda-opt converted.mlir -pass-pipeline="func.func(data-flow-graph)"

python3 S$ROOT/output/generate hatschet resources.py

hatschet dfg.graphml --scheduler=MOOVAC --resource=resources.xml --writeschedule=schedule.csv

soda-opt converted.mlir -pass-pipeline="func.func (loop-scheduling {schedule=schedule.csv})"
-o=scheduled.mlir

soda-opt scheduled.mlir -lower-affine

S. Curzel et al.,, Pre-Scheduling of Affine Loops for HLS Pipelining. In: Euro-Par 2024: Parallel Processing Workshops. 2025, pp. 431-442

Zaﬁ";}m 33

Multi-threaded accelerators: SPARTA

06

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering

Synthesis of PARallel multi-Threaded

Accelerators (SPARTA)

- Starts from high-level languages (C/C++)
annotated with OpenMP pragmas

» Parallel, for, sections
* Reduction, shared, private, firstprivate

» Critical, barrier
* Produces an accelerator with multiple cores that
can execute concurrently

SPARTA accelerator

Zaﬁ"ﬂm M

Sequential computation

Core 0

Core N

Local
memory

CS
manager

Local
memory

CS
manager

Core 1

Local
memory

CS
manager

Arbiter

Thread synchronization

Shared memory

REREEEE]

NoC

2222222

External memory

G.Gozzietal., SPARTA: High-Level Synthesis of Parallel Multi-Threaded Accelerators. In: ACM Trans. Reconfigurable Technol. Syst. 18.1 (Dec. 2024)

uoibal |9||eied

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering

o,
SPARTA synthesis flow za"‘)dﬁ

void dot product(int A[M], int B[M], int res[M]){ define 132 @dot product (...) {
int sum = 0; e
#pragma omp parallel num_threads(M) for call void __ kmpc_push_num_threads (M)

for(i =0; i < M; i++){
nrod(A[1], B[i], res[i]);
} }
4 define void @ .omp_outlined.(...) {
%6 = call 132 _ kmp_bambu_tid_from_gtid(i32 %0)

call void _ kmpc_fork call(.omp_outlined., ...)

call void prod(...)
Core 0 call void _ kmp_bambu_barrier_reached(i32 %6)
call void __ kmp_bambu_wait_all_threads()
Local ‘ CS

memory || manager

« Each outlined function is mapped to a core, which can be shared through context switching
« Hide external memory access latency

G.Gozzietal., SPARTA: High-Level Synthesis of Parallel Multi-Threaded Accelerators. In: ACM Trans. Reconfigurable Technol. Syst. 18.1 (Dec. 2024)

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering

Zaﬁ"ﬂm 36

SPARTA synthesis flow

- Integration to the standard synthesis flow of Bambu (*) exploiting the LLVM OpenMP runtime

.cl.cpp/ll |—>» HLS front-end HLS back-end standard Bambu flow
SPARTA contributions

directives pre-processing thread ID propagation

OpenMP pragmas pre- OpenMP functions versioning

processing
dead code elimination
= IR generation g alias analysis
PARTA
& : —> calls to OpenMP runtime
OpenMP library _ _ o
allocation, scheduling, binding, o ﬁ
. » .v/.vhd
static pointer analysis RTL generation

4

pointer promotion

(*) available
upon request

G.Gozzietal., SPARTA: High-Level Synthesis of Parallel Multi-Threaded Accelerators. In: ACM Trans. Reconfigurable Technol. Syst. 18.1 (Dec. 2024)

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering

SPARTA architecture

« Multiple parallel cores

« Hardware for arbitration and synchronization

« Efficientimplementation of reductions

« Configurable number of channels towards
external memory and custom NoC

« Works very well for irregular applications

SPARTA accelerator

Zaﬁ"ﬂm |

Sequential computation

Core 0

Core N

Local
memory

CS
manager

Local
memory

CS
manager

Core 1

Local
memory

CS
manager

Arbiter

Thread synchronization

Shared memory

REREEEE]

NoC

2222222

External memory

G.Gozzietal., SPARTA: High-Level Synthesis of Parallel Multi-Threaded Accelerators. In: ACM Trans. Reconfigurable Technol. Syst. 18.1 (Dec. 2024)

uoibal |9||eied

Thank you for the attention!

POLITECNICO DI MILANO

Department of Electronics, Information and Bioengineering

Vo o\
T sy
(=

https://github.com/ferrandi/PandA-bambu

rena.curzel limi.it
h -//[panda.deib.polimi.it/

mailto:serena.curzel@polimi.it
https://panda.deib.polimi.it/

More details

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering

Bambu features

Frontend passes:
« Source code optimizations
 Alias analysis, dead-code elimination, hoisting, loop optimizations, etc...

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering

Interface generation - FIFO

C++ FIFO interface support:
* ac_channel<«T>

 hls::stream<T>

void

Ro 20 R0 oo

int

Example of c++ code with ac_ channels

POLITECNICO DI MILANO

Dataflow

Department of Electronics, Information and Bioengineering

class SimpleSystem {

AddBlock<5> A;
MulBlock B;
SubSystem C;

ac_ channel<int> X, y;

public:
void top (ac_ channel<int>&in1, ac_ channel<int>&in2,
ac_ channel<int>&in3,
ac_ channel<int>&out) {
#pragma HLS dataflow
A.compute(inl, x);
B.compute(x, in2,y);
C.compute(y, in3, out);

I

ac_ channel<int>&in3,
ac_ channel<int>&out) {
static SimpleSystem sys;
sys.top(in1,in2, in3, out);

void dataflow_ top(ac_ channel<int>&in1, ac_ channel<int>&in2,

Source code in C++ with pragma dataflow

Comparison of the resulting task graph with and without dataflow

43

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering

Dataflow

Dataflow support

« ac_ channel & hils_ stream

FIFO depth could be controlled by pragmas
Struct passed as template parameter supported
Data field member support could be improved

ac_ intand ac_ fixed supported

« Synthesis efficiency improved when PandA-Bambu is used with
Clang16

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering

TrueFloat vs state of the art

204 16 4
#®— TrueFloat #— TrueFloat °
18 4 FloPoCo s FloPoCo eom38
~@ TemplateHLS : ' e11m52 144 @ TemplateHLS
16 4 " eBm23 €9m38
12 4
) 0
w 14 " @ o - _?? o
ki e emlo eIm38 ellms2 3 e8m23 v 8 e
=] =] . - o
= = 101 +~ o -
S e3m4 G e8m23 e9Im38 g g g5 Ex
% e8m23 v} [J & 209
g o g | esm1d = & g EE
104 eIm3s . 8{ | 0O o 24
e5m10 ellms2 R g &4
g/ e3m4 . / < .E 2 84
61 #e3m4 -z 0 ~ g
eBm23 eom38 bt a_' "E ;]
[] 1 & N
6 ® . e8m23 B 8 - gk
e3m4 eSm10 a{ = g ow
= 24
s e3ma esml0 '—D_.' -og ué E?
T T \ \ . T T T T T T T T T T T
50 100 150 200 250 300 350 25 50 75 100 125 150 175 200 225 E .—¢o 5 E E
Slices Slices ﬁ = g g :
9] 5 54
. . < 3 W Ao
- -0
Adder Multiplier PR
© = 5 :E
o 2 g
5 (4] = sg
—~ = [
0 =4
=) s >
-

PolyBench 2mm
HLS tool Cycles Slices DSPs LUTs Registers
Bambu 65250 422 2 1022 891
Vitis HLS 76708 413 14 908 1220

//doi.org/10.1007/978-3-031-46077-7_ 35

https

https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35

POLITECNICO DI MILANO

Impact of TrueFloat specialization strings

Spec

Cycles Slices LUTs Registers

Department of Electronics, Information and Bioengineering

Cycles Slices LUTs DSPs Registers

N
o

)
&

fa i

46

nih
nihs
noh
tih
toh

11
12
11
9
9

FPAdd
280 750
383 979
259 723
218 632
221 610

961 12
1219 13
869 12
763 10
676 10
|IEEE FP64

FPMult
216 447 10
210 448 10
206 400 10
167 370 10
150 316 10

927
936
964
607
674

TrueFloat: A Templatized Arithmetic

Library for HLS Floating-Point Operators

ndi

Ferrai

Cu

rzel®), and Fabrizio

Michele Fiorito, Serena

nico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy

Politec

.ferrandi}@polimi.it

el,fabrizio

{michele.fiorito,serena curz

https://doi.org/10.1007/978-3-031-46077-7_35

https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1007/978-3-031-46077-7_35

POLITECNICO DI MILANO

Department of Electronics, Information and Bioengineering

SPARTA results

40

35

30

25

—8—1 Contexts

4 Contexts

—8— 2 Contexts

8 Contexts

9

Speed up of SPARTA accelerators over the sequential baseline
for the Connected Components benchmark with different cores
and contexts

47

POLITECNICO DI MILANO Department of Electronics, Information and Bioengineering

SPARTA results

25
—i—1 Context —i— 2 Contexts
20
4 Contexts B Contexts
15
10
—il
. _—_____________
- -
& ——§ —i—
0
1 2 | g

Speed up of SPARTA accelerators over the sequential baseline
for the Triangle Count benchmark with different cores and
contexts

	Slide 1
	Slide 2: Outline
	Slide 3
	Slide 4: Bambu HLS
	Slide 5: Bambu: a modern open-source HLS tool
	Slide 6: Bambu: a modern HLS tool
	Slide 7: Bambu: a modern HLS tool
	Slide 8: Bambu: a modern HLS tool
	Slide 9: Bambu quality of results: CHStone
	Slide 10: Bambu quality of results: CHStone
	Slide 11: Bambu quality of results
	Slide 12: Verification
	Slide 13: Accelerator – host co-simulation
	Slide 14: Custom data formats: TrueFloat
	Slide 15: Custom floating-point formats
	Slide 16: Custom floating-point formats
	Slide 17: TrueFloat
	Slide 18: TrueFloat
	Slide 19: TrueFloat
	Slide 20: TrueFloat
	Slide 21: Interfaces and Caches
	Slide 22: Interface generation
	Slide 23: Interface generation – Axi4/AxiS
	Slide 24: Interface generation - Caches
	Slide 25: Compiler-driven innovation: Bambu + MLIR
	Slide 26: Compiler-driven innovation: MLIR
	Slide 27: The SODA Synthesizer
	Slide 28: The SODA Synthesizer
	Slide 29: CNN acceleration on FPGA
	Slide 30: Bambu + MLIR: high-level loop pipelining
	Slide 31: Bambu + MLIR: high-level loop pipelining
	Slide 32: Bambu + MLIR: high-level loop pipelining
	Slide 33: Multi-threaded accelerators: SPARTA
	Slide 34: Synthesis of PARallel multi-Threaded Accelerators (SPARTA)
	Slide 35: SPARTA synthesis flow
	Slide 36: SPARTA synthesis flow
	Slide 37: SPARTA architecture
	Slide 38: Thank you for the attention!
	Slide 39
	Slide 40: More details
	Slide 41: Bambu features
	Slide 42: Interface generation - FIFO
	Slide 43: Dataflow
	Slide 44: Dataflow
	Slide 45: TrueFloat vs state of the art
	Slide 46: Impact of TrueFloat specialization strings
	Slide 47: SPARTA results
	Slide 48: SPARTA results

